• Laser & Optoelectronics Progress
  • Vol. 57, Issue 22, 220001 (2020)
Qi Yafeng, Liu Yuhong*, and Liu Dameng
Author Affiliations
  • 清华大学机械工程系摩擦学国家重点实验室, 北京 100084
  • show less
    DOI: 10.3788/LOP57.220001 Cite this Article Set citation alerts
    Qi Yafeng, Liu Yuhong, Liu Dameng. Research Progress on Application of Raman Spectroscopy in Tumor Diagnosis[J]. Laser & Optoelectronics Progress, 2020, 57(22): 220001 Copy Citation Text show less
    References

    [1] Cao M M, Chen W Q. Epidemiology of cancer in China and the current status of prevention and control[J]. Chinese Journal of Clinical Oncology, 46, 145-149(2019).

    [2] Bray F, Ferlay J, Soerjomataram I et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA, 68, 394-424(2018).

    [3] Chen W Q, Zheng R S, Baade P D et al. Cancer statistics in China, 2015[J]. CA, 66, 115-132(2016). http://www.tandfonline.com/servlet/linkout?suffix=cit0001&dbid=8&doi=10.1080%2F15384047.2017.1414761&key=26808342

    [4] Huang Q, Ouyang X N. Predictive biochemical-markers for the development of brain metastases from lung cancer: clinical evidence and future directions[J]. Cancer Epidemiology, 37, 703-707(2013).

    [5] Inamura K, Ishikawa Y. MicroRNA in lung cancer: novel biomarkers and potential tools for treatment[J]. Journal of Clinical Medicine, 5, 36(2016).

    [6] Rice S L, Friedman K P. Clinical PET-MR imaging in breast cancer and lung cancer[J]. PET Clinics, 11, 387-402(2016).

    [7] Rebouças Filho P P, Cortez P C et al. Novel and powerful 3D adaptive crisp active contour method applied in the segmentation of CT lung images[J]. Medical Image Analysis, 35, 503-516(2017).

    [8] Vansteenkiste J, Fischer B M, Dooms C et al. Positron-emission tomography in prognostic and therapeutic assessment of lung cancer: systematic review[J]. The Lancet Oncology, 5, 531-540(2004).

    [9] Lian C F, Ruan S, Denoeux T et al. Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction[J]. Medical Image Analysis, 32, 257-268(2016). http://dx.doi.org/10.1016/j.media.2016.05.007

    [10] Gal A A. In search of the origins of modern surgical pathology[J]. Advances in Anatomic Pathology, 8, 1-13(2001).

    [11] Gutmann E J. Pathologists and patients: can we talk?[J]. Modern Pathology, 16, 515-518(2003).

    [12] Lechago J. The frozen section: pathology in the trenches[J]. Archives of Pathology & Laboratory Medicine, 129, 1529-1531(2005).

    [13] Raman C V, Krishnan K S. A new type of secondary radiation[J]. Nature, 121, 501-502(1928).

    [14] Kneipp K, Kneipp H, Itzkan I et al. Ultrasensitive chemical analysis by Raman spectroscopy[J]. Chemical Reviews, 99, 2957-2975(1999).

    [15] Movasaghi Z, Rehman S, Rehman I U. Raman spectroscopy of biological tissues[J]. Applied Spectroscopy Reviews, 42, 493-541(2007).

    [16] Zhao L F, Mu X J. Visualization of vibrational-resolution charge transfer enhanced resonance Raman scattering spectroscopy[J]. Spectrochimica Acta Part A, 229, 117945(2020).

    [17] Wade J, Pugh H, Nightingale J et al. Colour in bivalve shells: using resonance Raman spectroscopy to compare pigments at different phylogenetic levels[J]. Journal of Raman Spectroscopy, 50, 1527-1536(2019).

    [18] Liu S L, Ma H, Zhu J Y et al. Ferrous cytochrome c-nitric oxide oxidation for quantification of protein S-nitrosylation probed by resonance Raman spectroscopy[J]. Sensors and Actuators B, 308, 127706(2020).

    [19] Buhrke D, Hildebrandt P. Probing structure and reaction dynamics of proteins using time-resolved resonance Raman spectroscopy[J]. Chemical Reviews, 120, 3577-3630(2020).

    [20] Browne W R. Resonance Raman spectroscopy and its application in bioinorganic chemistry[M]. //Practical approaches to biological inorganic chemistry. Amsterdam: Elsevier, 275-324(2020).

    [21] Jeanmaire D L, Vanduyne R P. Surface Raman spectroelectrochemistry Part 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode[J]. Journal of Electroanalytical Chemistry, 84, 1-20(1977).

    [22] le Ru E C, Meyer M, Etchegoin P G. Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique[J]. The Journal of Physical Chemistry B, 110, 1944-1948(2006).

    [23] Li Z F, Li C, Lin D et al. Surface-enhanced Raman spectroscopy for differentiation between benign and malignant thyroid tissues[J]. Laser Physics Letters, 11, 045602(2014).

    [24] Falamaş A, Rotaru H, Hedeşiu M. Surface-enhanced Raman spectroscopy (SERS) investigations of saliva for oral cancer diagnosis[J]. Lasers in Medical Science, 35, 1393-1401(2020).

    [25] Cialla-May D, Zheng X, Weber K et al. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics[J]. Chemical Society Reviews, 46, 3945-3961(2017).

    [26] Talley C E, Jusinski L, Hollars C W et al. Intracellular pH sensors based on surface-enhanced Raman scattering[J]. Analytical Chemistry, 76, 7064-7068(2004).

    [27] Ru E C L, Blackie E, Meyer M et al. Surface enhanced Raman scattering enhancement factors: a comprehensive study[J]. Journal of Physical Chemistry C, 111, 13794-13803(2007).

    [28] Wang X, Huang S C, Huang T X et al. Tip-enhanced Raman spectroscopy for surfaces and interfaces[J]. Chemical Society Reviews, 46, 4020-4041(2017).

    [29] Sonntag M D, Pozzi E A, Jiang N et al. Recent advances in tip-enhanced Raman spectroscopy[J]. The Journal of Physical Chemistry Letters, 5, 3125-3130(2014).

    [30] Zhang R, Zhang Y, Dong Z C et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering[J]. Nature, 498, 82-86(2013).

    [31] Chen C, Hayazawa N, Kawata S. A 1.7nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient[J]. Nature Communications, 5, 3312(2014).

    [32] Kumar N, Weckhuysen B M, Wain A J et al. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy[J]. Nature Protocols, 14, 1169-1193(2019).

    [33] Chen X, Liu P, Hu Z et al. High-resolution tip-enhanced Raman scattering probes sub-molecular density changes[J]. Nature Communications, 10, 2567(2019).

    [34] Zong C, Premasiri R, Lin H et al. Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity[J]. Nature Communications, 10, 5318(2019).

    [35] Mittal R, Balu M, Krasieva T et al. Evaluation of stimulated Raman scattering microscopy for identifying squamous cell carcinoma in human skin[J]. Lasers in Surgery and Medicine, 45, 496-502(2013).

    [36] Prince R C, Frontiera R R, Potma E O. Stimulated Raman scattering: from bulk to nano[J]. Chemical Reviews, 117, 5070-5094(2017).

    [37] Yang W, Li A, Suo Y et al. Simultaneous two-color stimulated Raman scattering microscopy by adding a fiber amplifier to a 2 ps OPO-based SRS microscope[J]. Optics Letters, 42, 523-526(2017).

    [38] Ozeki Y, Kitagawa Y, Sumimura K et al. Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses[J]. Optics Express, 18, 13708-13719(2010).

    [39] Ranjan R, Indolfi M, Ferrara M A et al[J]. Implementation of a nonlinear microscope based on stimulated Raman scattering Journal of Visualized Experiments, 2019, e59614.

    [40] Krafft C, Schie I W, Meyer T et al. Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications[J]. Chemical Society Reviews, 45, 1819-1849(2016).

    [41] Gawinkowski S, Pszona M, Gorski A et al. Single molecule Raman spectra of porphycene isotopologues[J]. Nanoscale, 8, 3337-3349(2016).

    [42] Liu P C, Chen X, Ye H P et al. Resolving molecular structures with high-resolution tip-enhanced Raman scattering images[J]. ACS Nano, 13, 9342-9351(2019).

    [43] Laptenok S P, Rajamanickam V P, Genchi L C et al. Fingerprint-to-CH stretch continuously tunable high spectral resolution stimulated Raman scattering microscope[J]. Journal of Biophotonics, 12, e201900028(2019).

    [44] Batten T, Milikofu O. Characterising strain/stress[J]. defects in SiC wafers using Raman imaging. Materials Science Forum, 821/822/823, 229-232(2015).

    [45] Motoyama M, Ando M, Sasaki K et al. Simultaneous imaging of fat crystallinity and crystal polymorphic types by Raman microspectroscopy[J]. Food Chemistry, 196, 411-417(2016).

    [46] Wood J J, Kendall C, Hutchings J et al. Evaluation of a confocal Raman probe for pathological diagnosis during colonoscopy[J]. Colorectal Disease, 16, 732-738(2014).

    [47] Jermyn M, Mok K, Mercier J et al. 7(274): 274ra19(2015).

    [48] Bergholt M S, Lin K, Wang J F et al. Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy enhances real-time in vivo diagnosis of adenomatous polyps during colonoscopy[J]. Journal of Biophotonics, 9, 333-342(2016).

    [49] Garai E, Sensarn S, Zavaleta C L et al. A real-time clinical endoscopic system for intraluminal, multiplexed imaging of surface-enhanced Raman scattering nanoparticles[J]. PLoS One, 10, e0123185(2015).

    [50] Wang Y W, Kang S, Khan A et al. In vivo multiplexed molecular imaging of esophageal cancer via spectral endoscopy of topically applied SERS nanoparticles[J]. Biomedical Optics Express, 6, 3714-3723(2015).

    [51] Tiberj A, Camara N, Godignon P et al. Micro-Raman and micro-transmission imaging of epitaxial graphene grown on the Si and C faces of 6H-SiC[J]. Nanoscale Research Letters, 6, 478(2011).

    [52] Suda J, Suwa S, Mizuno S et al. Micro-Raman imaging on 4H-SiC in contact with the electrode at room temperature[J]. Spectrochimica Acta Part A, 193, 393-396(2018).

    [53] Wu J P. Linear quantification calibration of crystallinity at subpercent and its evaluation based on spectral and spatial information inherited in Raman chemical images[J]. Journal of Raman Spectroscopy, 45, 686-695(2014).

    [54] Wang P. Anderson E J D, Muller E A, et al. Hyper-spectral Raman imaging correlating chemical substitution and crystallinity in biogenic hydroxyapatite: dentin and enamel in normal and hypoplastic human teeth[J]. Journal of Raman Spectroscopy, 49, 1559-1567(2018).

    [55] Zhang Y J, Lai X P, Zeng Q Y et al. Classifying low-grade and high-grade bladder cancer using label-free serum surface-enhanced Raman spectroscopy and support vector machine[J]. Laser Physics, 28, 035603(2018).

    [56] Chen S, Zhu S S, Cui X Y et al. Identifying non-muscle-invasive and muscle-invasive bladder cancer based on blood serum surface-enhanced Raman spectroscopy[J]. Biomedical Optics Express, 10, 3533-3544(2019).

    [57] Chen H, Li X, Broderick N et al. Identification and characterization of bladder cancer by low-resolution fiber-optic Raman spectroscopy[J]. Journal of Biophotonics, 11, e201800016(2018).

    [58] Chen H, Li X. Broderick N G R, et al. Low-resolution fiber-optic Raman spectroscopy for bladder cancer diagnosis: a comparison study of varying laser power, integration time, and classification methods[J]. Journal of Raman Spectroscopy, 51, 323-334(2020).

    [59] Galli R, Meinhardt M, Koch E et al. Rapid label-free analysis of brain tumor biopsies by near infrared Raman and fluorescence spectroscopy: a study of 209 patients[J]. Frontiers in Oncology, 9, 1165(2019).

    [60] Kowalska A A, Berus S, Szleszkowski Ł et al. Brain tumour homogenates analysed by surface-enhanced Raman spectroscopy: discrimination among healthy and cancer cells[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 231, 117769(2020).

    [61] Lemoine E, Dallaire F, Yadav R et al. Feature engineering applied to intraoperative in vivo Raman spectroscopy sheds light on molecular processes in brain cancer: a retrospective study of 65 patients[J]. Analyst, 144, 6517-6532(2019).

    [62] Krishnamoorthy C, Prakasarao A, Srinivasan V et al. Monitoring of breast cancer patients under pre and post treated conditions using Raman spectroscopic analysis of blood plasma[J]. Vibrational Spectroscopy, 105, 102982(2019).

    [63] Nargis H F, Nawaz H, Ditta A et al. Raman spectroscopy of blood plasma samples from breast cancer patients at different stages[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 222, 117210(2019).

    [64] Lin D, Wang Y Y, Wang T Y et al. Metabolite profiling of human blood by surface-enhanced Raman spectroscopy for surgery assessment and tumor screening in breast cancer[J]. Analytical and Bioanalytical Chemistry, 412, 1611-1618(2020).

    [65] González-Solís J L. Discrimination of different cancer types clustering Raman spectra by a super paramagnetic stochastic network approach[J]. PLoS One, 14, e0213621(2019).

    [66] Zhang C, Winnard P T, Dasari S et al. Label-free Raman spectroscopy provides early determination and precise localization of breast cancer-colonized bone alterations[J]. Chemical Science, 9, 743-753(2018).

    [67] Moisoiu V, Socaciu A, Stefancu A et al. Breast cancer diagnosis by surface-enhanced Raman scattering (SERS) of urine[J]. Applied Sciences, 9, 806(2019).

    [68] Zhang P, Wang L M, Fang Y P et al. Label-free exosomal detection and classification in rapid discriminating different cancer types based on specific Raman phenotypes and multivariate statistical analysis[J]. Molecules, 24, 2947(2019). http://www.researchgate.net/publication/335180527_Label-Free_Exosomal_Detection_and_Classification_in_Rapid_Discriminating_Different_Cancer_Types_Based_on_Specific_Raman_Phenotypes_and_Multivariate_Statistical_Analysis

    [69] Fallahzadeh O, Dehghani-Bidgoli Z, Assarian M. Raman spectral feature selection using ant colony optimization for breast cancer diagnosis[J]. Lasers in Medical Science, 33, 1799-1806(2018).

    [70] Lyng F M, Traynor D. Nguyen T N Q, et al. Discrimination of breast cancer from benign tumours using Raman spectroscopy[J]. PLoS One, 14, e0212376(2019).

    [71] Zúñiga W C, Jones V, Anderson S M et al. Raman spectroscopy for rapid evaluation of surgical margins during breast cancer lumpectomy[J]. Scientific Reports, 9, 14639(2019).

    [72] Vanna R, Morasso C, Marcinnò B et al. Raman spectroscopy reveals that biochemical composition of breast microcalcifications correlates with histopathologic features[J]. Cancer Research, 80, 1762-1772(2020). http://cancerres.aacrjournals.org/content/80/8/1762

    [73] Woolford L, Chen M Z, Dholakia K et al. Towards automated cancer screening: label-free classification of fixed cell samples using wavelength modulated Raman spectroscopy[J]. Journal of Biophotonics, 11, e201700244(2018).

    [74] Hole A, Tyagi G, Sahu A et al. Exploration of Raman exfoliated cytology for oral and cervical cancers[J]. Vibrational Spectroscopy, 98, 35-40(2018).

    [75] Traynor D, Duraipandian S, Bhatia R et al. The potential of biobanked liquid based cytology samples for cervical cancer screening using Raman spectroscopy[J]. Journal of Biophotonics, 12, e201800377(2019).

    [76] Raja P, Aruna P, Koteeswaran D et al. Characterization of blood plasma of normal and cervical cancer patients using NIR Raman spectroscopy[J]. Vibrational Spectroscopy, 102, 1-7(2019).

    [77] Li X Z, Yang T Y, Li C S et al. Surface enhanced Raman spectroscopy (SERS) for the multiplex detection of BRAF, KRAS, and PIK3CA mutations in plasma of colorectal cancer patients[J]. Theranostics, 8, 1678-1689(2018).

    [78] Jenkins C A, Jenkins R A, Pryse M M et al. A high-throughput serum Raman spectroscopy platform and methodology for colorectal cancer diagnostics[J]. Analyst, 143, 6014-6024(2018).

    [79] Gala de Pablo J, Armistead F J, Peyman S A et al. Biochemical fingerprint of colorectal cancer cell lines using label-free live single-cell Raman spectroscopy[J]. Journal of Raman Spectroscopy, 49, 1323-1332(2018).

    [80] Dai W Y, Lee S, Hsu Y C. Discrimination between oral cancer and healthy cells based on the adenine signature detected by using Raman spectroscopy[J]. Journal of Raman Spectroscopy, 49, 336-342(2018). http://onlinelibrary.wiley.com/doi/pdf/10.1002/jrs.5289

    [81] Chen Y S, Cheng S L, Zhang A et al. Salivary analysis based on surface enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons[J]. Journal of Biomedical Nanotechnology, 14, 1773-1784(2018).

    [82] Bahreini M, Hosseinzadegan A, Rashidi A et al. A Raman-based serum constituents’analysis for gastric cancer diagnosis: in vitro study[J]. Talanta, 204, 826-832(2019).

    [83] Guo L, Li Y P, Huang F R et al. Identification and analysis of serum samples by surface-enhanced Raman spectroscopy combined with characteristic ratio method and PCA for gastric cancer detection[J]. Journal of Innovative Optical Health Sciences, 12, 1950003(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJ190416000255SoVrYu

    [84] Avram L, Iancu S D, Stefancu A et al. SERS-based liquid biopsy of gastrointestinal tumors using a portable Raman device operating in a clinical environment[J]. Journal of Clinical Medicine, 9, 212(2020).

    [85] Lai H C, Wan Z D, Wu Q et al. Surface-enhanced Raman spectroscopy for classification of laryngeal cancer and adjacent tissues[J]. Laser Physics, 29, 105601(2019). http://www.researchgate.net/publication/335637948_Surface-enhanced_Raman_spectroscopy_for_classification_of_laryngeal_cancer_and_adjacent_tissues

    [86] Lin K C, Xu J S, Li L et al. Label-free detection of liver cancer based on silver nanoparticles coated tissue surface-enhanced Raman spectroscopy[J]. Laser Physics Letters, 15, 125601(2018).

    [87] Zhang K, Hao C Y, Man B Y et al. Diagnosis of liver cancer based on tissue slice surface enhanced Raman spectroscopy and multivariate analysis[J]. Vibrational Spectroscopy, 98, 82-87(2018).

    [88] Yu Y, Lin Y T, Xu C X et al. Label-free detection of nasopharyngeal and liver cancer using surface-enhanced Raman spectroscopy and partial lease squares combined with support vector machine[J]. Biomedical Optics Express, 9, 6053-6066(2018).

    [89] Zhu W F, Cheng L X, Li M et al. Frequency shift Raman-based sensing of serum MicroRNAs for early diagnosis and discrimination of primary liver cancers[J]. Analytical Chemistry, 90, 10144-10151(2018).

    [90] Cao X W, Wang Z Y, Bi L Y et al. Label-free detection of human serum using surface-enhanced Raman spectroscopy based on highly branched gold nanoparticle substrates for discrimination of non-small cell lung cancer[J]. Journal of Chemistry, 2018, 1-13(2018). http://www.onacademic.com/detail/journal_1000041641718699_c1cb.html

    [91] Wang H, Zhang S H, Wan L M et al. Screening and staging for non-small cell lung cancer by serum laser Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 201, 34-38(2018).

    [92] Wolny-Rokicka E, Tukiendorf A, Wydmański J et al. The potential of the quick detection of selectins using Raman spectroscopy to discriminate lung cancer patients from healthy subjects[J]. Journal of Spectroscopy, 2018, 7843208(2018).

    [93] Qian K, Wang Y, Hua L et al. New method of lung cancer detection by saliva test using surface-enhanced Raman spectroscopy[J]. Thoracic Cancer, 9, 1556-1561(2018).

    [94] Qiao X Z, Su B S, Liu C et al. Selective surface enhanced Raman scattering for quantitative detection of lung cancer biomarkers in superparticle@MOF structure[J]. Advanced Materials, 30, 1702275(2018). http://onlinelibrary.wiley.com/doi/10.1002/adma.201702275

    [95] Paidi S K, Diaz P M, Dadgar S et al. Label-free Raman spectroscopy reveals signatures of radiation resistance in the tumor microenvironment[J]. Cancer Research, 79, 2054-2064(2019).

    [96] Zhang Y J, Zeng Q, Li L et al. Characterization and identification of lung cancer cells from blood cells with label-free surface-enhanced Raman scattering[J]. Laser Physics, 29, 045602(2019).

    [97] Sinica A, Brožáková K. Br u˙ha T, et al. Raman spectroscopic discrimination of normal and cancerous lung tissues[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 219, 257-266(2019).

    [98] Song D L, Yu F, Chen S L et al. Raman spectroscopy combined with multivariate analysis to study the biochemical mechanism of lung cancer microwave ablation[J]. Biomedical Optics Express, 11, 1061-1072(2020). http://www.researchgate.net/publication/339600404_Raman_spectroscopy_combined_with_multivariate_analysis_to_study_the_biochemical_mechanism_of_lung_cancer_microwave_ablation/download

    [99] Khan S, Ullah R, Shahzad S et al. Optical screening of nasopharyngeal cancer using Raman spectroscopy and support vector machine[J]. Optik, 157, 565-570(2018).

    [100] Wu Q, Qiu S F, Yu Y et al. Assessment of the radiotherapy effect for nasopharyngeal cancer using plasma surface-enhanced Raman spectroscopy technology[J]. Biomedical Optics Express, 9, 3413-3423(2018).

    [101] Lin H, Zhou J, Wu Q et al. Human blood test based on surface-enhanced Raman spectroscopy technology using different excitation light for nasopharyngeal cancer detection[J]. Iet Nanobiotechnology, 13, 942-945(2019).

    [102] Xue L L, Yan B, Li Y et al. Surface-enhanced Raman spectroscopy of blood serum based on gold nanoparticles for tumor stages detection and histologic grades classification of oral squamous cell carcinoma[J]. International Journal of Nanomedicine, 13, 4977-4986(2018). http://www.onacademic.com/detail/journal_1000042319277099_35dd.html

    [103] Ghosh A, Raha S, Dey S et al. Chemometric analysis of integrated FTIR and Raman spectra obtained by non-invasive exfoliative cytology for the screening of oral cancer[J]. Analyst, 144, 1309-1325(2019).

    [104] Jeng M, Sharma M, Sharma L et al. Raman spectroscopy analysis for optical diagnosis of oral cancer detection[J]. Journal of Clinical Medicine, 8, 1313(2019).

    [105] Paraskevaidi M, Ashton K M, Stringfellow H F et al. Raman spectroscopic techniques to detect ovarian cancer biomarkers in blood plasma[J]. Talanta, 189, 281-288(2018).

    [106] Morais C L M, Martin-Hirsch P L, Martin F. A three-dimensional principal component analysis approach for exploratory analysis of hyperspectral data: identification of ovarian cancer samples based on Raman microspectroscopy imaging of blood plasma[J]. Analyst, 144, 2312-2319(2019).

    [107] Zermeño-Nava J D J, Martínez-Martínez M U, Rámirez-De-ávila A L et al. Determination of sialic acid in saliva by means of surface-enhanced Raman spectroscopy as a marker in adnexal mass patients: ovarian cancer vs benign cases[J]. Journal of Ovarian Research, 11, 61(2018).

    [108] Viswanathan K, Soumya K, Gurusankar K et al. Raman spectroscopic analysis of ovarian cancer tissues and normal ovarian tissues[J]. Laser Physics, 29, 045701(2019).

    [109] Carmicheal J, Hayashi C, Huang X et al. Label-free characterization of exosome via surface enhanced Raman spectroscopy for the early detection of pancreatic cancer[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 16, 88-96(2019). http://www.onacademic.com/detail/journal_1000041592042799_aa59.html

    [110] Aubertin K, Desroches J, Jermyn M et al. Combining high wavenumber and fingerprint Raman spectroscopy for the detection of prostate cancer during radical prostatectomy[J]. Biomedical Optics Express, 9, 4294-4305(2018).

    [111] Aubertin K, Trinh V Q, Jermyn M et al. Mesoscopic characterization of prostate cancer using Raman spectroscopy: potential for diagnostics and therapeutics[J]. BJU International, 122, 326-336(2018).

    [112] Magalhães F L. Machado A M C, Paulino E, et al. Raman spectroscopy with a 1064-nm wavelength laser as a potential molecular tool for prostate cancer diagnosis: a pilot study[J]. Journal of Biomedical Optics, 23, 121613(2018).

    [113] Lee W, Nanou A, Rikkert L et al. Label-free prostate cancer detection by characterization of extracellular vesicles using Raman spectroscopy[J]. Analytical Chemistry, 90, 11290-11296(2018).

    [114] Correia N A. Batista L T A, Nascimento R J M, et al. Detection of prostate cancer by Raman spectroscopy: a multivariate study on patients with normal and altered PSA values[J]. Journal of Photochemistry and Photobiology B, 204, 111801(2020).

    [115] Qian H Y, Shao X G, Zhu Y J et al. 38(6): 601. e1-, 601, e9(2020).

    [116] Feng X, Moy A J. Nguyen H T M, et al. Raman biophysical markers in skin cancer diagnosiss[J]. Journal of Biomedical Optics, 23, 057002(2018).

    [117] Ferreira Lima A M, Daniel C R, Navarro R S et al. Discrimination of non-melanoma skin cancer and keratosis from normal skin tissue in vivo and ex vivo by Raman spectroscopy[J]. Vibrational Spectroscopy, 100, 131-141(2019).

    [118] Garcia D V, Silveira L et al. Analysis of Raman spectroscopy data with algorithms based on paraconsistent logic for characterization of skin cancer lesions[J]. Vibrational Spectroscopy, 103, 102929(2019).

    [119] Zhang X, Yu F, Li J et al. Investigation on the cancer invasion and metastasis of skin squamous cell carcinoma by Raman spectroscopy[J]. Molecules, 24, 2059(2019). http://www.researchgate.net/publication/333499144_Investigation_on_the_Cancer_Invasion_and_Metastasis_of_Skin_Squamous_Cell_Carcinoma_by_Raman_Spectroscopy

    [120] O’Dea D, Bongiovanni M, Sykiotis G P et al. Raman spectroscopy for the preoperative diagnosis of thyroid cancer and its subtypes: an in vitro proof-of-concept study[J]. Cytopathology, 30, 51-60(2019).

    [121] Liang X Z, Miao X C, Xiao W J et al. Filter-membrane-based ultrafiltration coupled with surface-enhanced Raman spectroscopy for potential differentiation of benign and malignant thyroid tumors from blood plasma[J]. International Journal of Nanomedicine, 15, 2303-2314(2020).

    [122] Atkins C G, Buckley K, Blades M W et al. Raman spectroscopy of blood and blood components[J]. Applied Spectroscopy, 71, 767-793(2017).

    [123] Perakis S, Speicher M R. Emerging concepts in liquid biopsies[J]. BMC Medicine, 15, 75(2017).

    [124] Siravegna G, Marsoni S, Siena S et al. Integrating liquid biopsies into the management of cancer[J]. Nature Reviews Clinical Oncology, 14, 531-548(2017). http://www.nature.com/articles/nrclinonc.2017.14

    [125] Xu X B, Li H F, Hasan D H et al. Near-field enhanced plasmonic-magnetic bifunctional nanotubes for single cell bioanalysis[J]. Advanced Functional Materials, 23, 4332-4338(2013).

    [126] Nam W, Ren X. Tali S A S, et al. Refractive-index-insensitive nanolaminated SERS substrates for label-free Raman profiling and classification of living cancer cells[J]. Nano Letters, 19, 7273-7281(2019).

    [127] Wang J, Liang D W, Feng J et al. Multicolor cocktail for breast cancer multiplex phenotype targeting and diagnosis using bioorthogonal surface-enhanced Raman scattering nanoprobes[J]. Analytical Chemistry, 91, 11045-11054(2019).

    [128] Lee J U, Kim W H, Lee H S et al. Quantitative and specific detection of exosomal miRNAs for accurate diagnosis of breast cancer using a surface-enhanced Raman scattering sensor based on plasmonic head-flocked gold nanopillars[J]. Small, 15, 1804968(2019). http://onlinelibrary.wiley.com/doi/10.1002/smll.201804968

    [129] Kim S, Kim T G, Lee S H et al. Label-free surface-enhanced Raman spectroscopy biosensor for on-site breast cancer detection using human tears[J]. ACS Applied Materials & Interfaces, 12, 7897-7904(2020).

    [130] Bai X R, Wang L H, Ren J Q et al. Accurate clinical diagnosis of liver cancer based on simultaneous detection of ternary specific antigens by magnetic induced mixing surface-enhanced Raman scattering emissions[J]. Analytical Chemistry, 91, 2955-2963(2019).

    [131] Tang R, Hu R, Jiang X H et al. LHRH-targeting surface-enhanced Raman scattering tags for the rapid detection of circulating tumor cells[J]. Sensors and Actuators B, 284, 468-474(2019). http://www.sciencedirect.com/science/article/pii/S0925400518322664

    [132] Lu D, Xia J, Deng Z et al. Detection of squamous cell carcinoma antigen in cervical cancer by surface-enhanced Raman scattering-based immunoassay[J]. Analytical Methods, 11, 2809-2818(2019).

    [133] Xie M, Li F, Gu P L et al. Gold nanoflower-based surface-enhanced Raman probes for pH mapping of tumor cell microenviroment[J]. Cell Proliferation, 52, e12618(2019).

    [134] Hong Y, Li Y Q, Huang L B et al. Label-free diagnosis for colorectal cancer through coffee ring-assisted surface-enhanced Raman spectroscopy on blood serum[J]. Journal of Biophotonics, 13, e201960176(2020).

    [135] Teng Y J, Ren Z Y, Zhang Y C et al. Determination of prostate cancer marker Zn 2+ with a highly selective surface-enhanced Raman scattering probe on liquid-liquid self-assembled Au nanoarrays[J]. Talanta, 209, 120569(2020). http://www.researchgate.net/publication/337308396_Determination_of_prostate_cancer_marker_Zn2_with_a_highly_selective_surface-enhanced_Raman_scattering_probe_on_liquid-liquid_self-assembled_Au_nanoarrays

    [136] Zhang X R, Liu C, Pei Y J et al. Preparation of a novel Raman probe and its application in the detection of circulating tumor cells and exosomes[J]. ACS Applied Materials & Interfaces, 11, 28671-28680(2019).

    [137] Zhang W, Jiang L M, Diefenbach R J et al. Enabling sensitive phenotypic profiling of cancer-derived small extracellular vesicles using surface-enhanced Raman spectroscopy nanotags[J]. ACS Sensors, 5, 764-771(2020). http://pubs.acs.org/doi/10.1021/acssensors.9b02377

    [138] Reokrungruang P, Chatnuntawech I, Dharakul T et al. A simple paper-based surface enhanced Raman scattering (SERS) platform and magnetic separation for cancer screening[J]. Sensors and Actuators B, 285, 462-469(2019).

    [139] Li L H, Liao M L, Chen Y F et al. Surface-enhanced Raman spectroscopy (SERS) nanoprobes for ratiometric detection of cancer cells[J]. Journal of Materials Chemistry B, 7, 815-822(2019).

    [140] Nguyen T D, Song M S, Ly N H et al. Nanostars on nanopipette tips: a Raman probe for quantifying oxygen levels in hypoxic single cells and tumours[J]. Angewandte Chemie International Edition, 58, 2710-2714(2019).

    [141] Andreou C, Oseledchyk A, Nicolson F et al[J]. Surface-enhanced resonance Raman scattering nanoprobe ratiometry for detecting microscopic ovarian cancer via folate receptor targeting Journal of Visualized Experiments, 2019, e58389.

    [142] Niciński K, Krajczewski J, Kudelski A et al. Detection of circulating tumor cells in blood by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) in microfluidic device[J]. Scientific Reports, 9, 9267(2019).

    [143] Králová Z O, Oriňak A, Oriňaková R et al. Electrochemically deposited silver detection substrate for surface-enhanced Raman spectroscopy cancer diagnostics[J]. Journal of Biomedical Optics, 23, 075002(2018).

    [144] Zhang K, Liu X J, Man B Y et al. Label-free and stable serum analysis based on Ag-NPs/PSi surface-enhanced Raman scattering for noninvasive lung cancer detection[J]. Biomedical Optics Express, 9, 4345-4358(2018). http://www.researchgate.net/publication/327084004_Label-free_and_stable_serum_analysis_based_on_Ag-NPsPSi_surface-enhanced_Raman_scattering_for_noninvasive_lung_cancer_detection

    [145] Zhang K, Hao C Y, Huo Y Y et al. Label-free diagnosis of lung cancer with tissue-slice surface-enhanced Raman spectroscopy and statistical analysis[J]. Lasers in Medical Science, 34, 1849-1855(2019).

    [146] Deng R, Yue J, Qu H X et al. Glucose-bridged silver nanoparticle assemblies for highly sensitive molecular recognition of sialic acid on cancer cells via surface-enhanced Raman scattering spectroscopy[J]. Talanta, 179, 200-206(2018).

    [147] Chundayil Madathil G, Iyer S, Thankappan K et al. A novel surface enhanced Raman catheter for rapid detection, classification, and grading of oral cancer[J]. Advanced Healthcare Materials, 8, 1801557(2019). http://onlinelibrary.wiley.com/doi/10.1002/adhm.201801557

    [148] Koo K M, Wang J, Richards R S et al. Design and clinical verification of surface-enhanced Raman spectroscopy diagnostic technology for individual cancer risk prediction[J]. ACS Nano, 12, 8362-8371(2018).

    [149] Yang L, Zhen S J, Li Y F et al. Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker[J]. Nanoscale, 10, 11942-11947(2018).

    [150] Brozek-Pluska B, Kopec M, Surmacki J. Surface-enhanced Raman spectroscopy analysis of human breast cancer via silver nanoparticles: an examination of fabrication methods[J]. Journal of Spectroscopy, 2018, 4893274(2018).

    [151] Si Y, Xu L, Wang N et al. Target microRNA-responsive DNA hydrogel-based surface-enhanced Raman scattering sensor arrays for microRNA-marked cancer screening[J]. Analytical Chemistry, 92, 2649-2655(2020).

    [152] Xiang Y, Yang H R, Guo X Y et al. Surface enhanced Raman detection of the colon cancer biomarker cytidine by using magnetized nanoparticles of the type Fe3O4/Au/Ag[J]. Microchimica Acta, 185, 195(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=a493471bf9c56457ceb05e2ba3924463

    [153] Cui X Y, Hu D Y, Wang C Y et al. A surface-enhanced Raman scattering-based probe method for detecting chromogranin A in adrenal tumors[J]. Nanomedicine, 15, 397-407(2020).

    [154] Lin X L, Wang Y Y, Wang L N et al. Interference-free and high precision biosensor based on surface enhanced Raman spectroscopy integrated with surface molecularly imprinted polymer technology for tumor biomarker detection in human blood[J]. Biosensors & Bioelectronics, 143, 111599(2019).

    [155] Dharmalingam P, Venkatakrishnan K, Tan B. Probing cancer metastasis at a single-cell level with a Raman-functionalized anionic probe[J]. Nano Letters, 20, 1054-1066(2020).

    [156] Keshavarz M, Kassanos P, Tan B et al. Metal-oxide surface-enhanced Raman biosensor template towards point-of-care EGFR detection and cancer diagnostics[J]. Nanoscale Horizons, 5, 294-307(2020).

    [157] Rüger J et al. Combined Raman and AFM detection of changes in HeLa cervical cancer cells induced by CeO2 nanoparticles-molecular and morphological perspectives[J]. The Analyst, 145, 3983-3995(2020). http://www.researchgate.net/publication/340156304_Combined_Raman_and_AFM_detection_of_changes_in_HeLa_cervical_cancer_cells_induced_by_CeO2_nanoparticles_-_molecular_and_morphological_perspective

    [158] Hollon T C, Pandian B, Adapa A R et al. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks[J]. Nature Medicine, 26, 52-58(2020).

    [159] Aljakouch K, Hilal Z, Daho I et al. Fast and noninvasive diagnosis of cervical cancer by coherent anti-stokes Raman scattering[J]. Analytical Chemistry, 91, 13900-13906(2019).

    [160] Zhang L L, Wu Y Z, Zheng B et al. Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy[J]. Theranostics, 9, 2541-2554(2019). http://www.onacademic.com/detail/journal_1000042328723399_8f0f.html

    [161] Hollon T C, Lewis S, Pandian B et al. Rapid intraoperative diagnosis of pediatric brain tumors using stimulated Raman histology[J]. Cancer Research, 78, 278-289(2018).

    [162] Shin K S, Francis A T, Hill A H et al[J]. Intraoperative assessment of skull base tumors using stimulated Raman scattering microscopy Scientific Reports, 9, 20392.

    [163] Sarri B, Canonge R, Audier X et al[J]. Fast stimulated Raman and second harmonic generation imaging for intraoperative gastro-intestinal cancer detection Scientific Reports, 9, 10052.

    [164] Yan S, Cui S S, Ke K et al. Hyperspectral stimulated Raman scattering microscopy unravels aberrant accumulation of saturated fat in human liver cancer[J]. Analytical Chemistry, 90, 6362-6366(2018).

    [165] Huang K C, Li J J, Zhang C et al. Multiplex stimulated Raman scattering imaging cytometry reveals lipid-rich protrusions in cancer cells under stress condition[J]. iScience, 23, 100953(2020).

    [166] Jin Q Q, Fan X L, Chen C M et al. Multicolor Raman beads for multiplexed tumor cell and tissue imaging and in vivo tumor spectral detection[J]. Analytical Chemistry, 91, 3784-3789(2019).

    [167] Gong L, Zheng W, Ma Y et al. Higher-order coherent anti-Stokes Raman scattering microscopy realizes label-free super-resolution vibrational imaging[J]. Nature Photonics, 14, 115-122(2020).

    [168] Li Z L, Li S W, Zhang S L et al. Coherent Raman scattering microscopy technique and its biomedical applications[J]. Chinese Journal of Lasers, 47, 0207005(2020).

    [169] Zhang B H, Guo L, Yao L et al. Rapid histological imaging using stimulated Raman scattering microscopy[J]. Chinese Journal of Lasers, 47, 0207018(2020).

    [170] Davis R M, Kiss B, Trivedi D R et al. Surface-enhanced Raman scattering nanoparticles for multiplexed imaging of bladder cancer tissue permeability and molecular phenotype[J]. ACS Nano, 12, 9669-9679(2018).

    [171] Zou Y X, Huang S Q, Liao Y X et al. Isotopic graphene-isolated-Au-nanocrystals with cellular Raman-silent signals for cancer cell pattern recognition[J]. Chemical Science, 9, 2842-2849(2018).

    [172] Wu X X, Peng Y, Duan X M et al. Homologous gold nanoparticles and nanoclusters composites with enhanced surface Raman scattering and metal fluorescence for cancer imaging[J]. Nanomaterials, 8, 819(2018).

    [173] Yarbakht M, Nikkhah M, Moshaii A et al. Simultaneous isolation and detection of single breast cancer cells using surface-enhanced Raman spectroscopy[J]. Talanta, 186, 44-52(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=25bd6104922847c259ec12d7c9d0a0a7

    [174] Liang D W, Jin Q Q, Yan N et al. SERS nanoprobes in biologically Raman silent region for tumor cell imaging and in vivo tumor spectral detection in mice[J]. Advanced Biosystems, 2, 1800100(2018).

    [175] Zhang J, Liang L J, Guan X et al. In situ, accurate, surface-enhanced Raman scattering detection of cancer cell nucleus with synchronous location by an alkyne-labeled biomolecular probe[J]. Analytical and Bioanalytical Chemistry, 410, 585-594(2018).

    [176] Zhang T, Qin Y T, Tan T W et al. Targeted live cell Raman imaging and visualization of cancer biomarkers with thermal-stimuli responsive imprinted nanoprobes[J]. Particle & Particle Systems Characterization, 35, 1800390(2018). http://onlinelibrary.wiley.com/doi/10.1002/ppsc.201800390

    [177] Chang J, Zhang A, Huang Z C et al. Monodisperse Au@Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells[J]. Talanta, 198, 45-54(2019).

    [178] Shi B W, Zhang B Y, Zhang Y Q et al. Multifunctional gap-enhanced Raman tags for preoperative and intraoperative cancer imaging[J]. Acta Biomaterialia, 104, 210-220(2020).

    [179] Martinez Pancorbo P, Thummavichai K, Clark L et al. Novel Au-SiO2-WO3 core-shell composite nanoparticles for surface-enhanced Raman spectroscopy with potential application in cancer cell imaging[J]. Advanced Functional Materials, 29, 1903549(2019).

    [180] Zhang Y Q, Liu Z Y, Thackray B D et al. Intraoperative Raman-guided chemo-photothermal synergistic therapy of advanced disseminated ovarian cancers[J]. Small, 14, 1801022(2018).

    [181] Neuschmelting V, Harmsen S, Beziere N et al. Dual-modality surface-enhanced resonance Raman scattering and multispectral optoacoustic tomography nanoparticle approach for brain tumor delineation[J]. Small, 14, 1800740(2018). http://www.zhangqiaokeyan.com/academic-journal-foreign-pmc_detail_thesis/040005257918.html

    [182] Wang J P, Sun J Y, Wang Y H et al. Gold nanoframeworks with mesopores for Raman-photoacoustic imaging and photo-chemo tumor therapy in the second near-infrared biowindow[J]. Advanced Functional Materials, 30, 1908825(2020).

    [183] Pal S, Ray A, Andreou C et al[J]. DNA-enabled rational design of fluorescence-Raman bimodal nanoprobes for cancer imaging and therapy Nature Communications, 10, 1926.

    [184] Nicolson F, Andreiuk B, Andreou C et al. Non-invasive in vivo imaging of cancer using surface-enhanced spatially offset Raman spectroscopy (SESORS)[J]. Theranostics, 9, 5899-5913(2019). http://www.researchgate.net/publication/335729232_Non-invasive_In_Vivo_Imaging_of_Cancer_Using_Surface-Enhanced_Spatially_Offset_Raman_Spectroscopy_SESORS

    [185] Nicolson F, Jamieson L E, Mabbott S et al. Through tissue imaging of a live breast cancer tumour model using handheld surface enhanced spatially offset resonance Raman spectroscopy (SESORRS)[J]. Chemical Science, 9, 3788-3792(2018).

    [186] Song D L, Chen T M, Wang S et al. Study on the biochemical mechanisms of the micro-wave ablation treatment of lung cancer by ex vivo confocal Raman microspectral imaging[J]. Analyst, 145, 626-635(2020). http://pubs.rsc.org/en/content/articlelanding/2020/an/c9an01524h

    [187] Sitarz K, Czamara K, Bialecka J et al. HPV infection significantly accelerates glycogen metabolism in cervical cells with large nuclei: Raman microscopic study with subcellular resolution[J]. International Journal of Molecular Sciences, 21, 2667(2020).

    [188] Brozek-Pluska B, Miazek K, Musial J et al. Label-free diagnostics and cancer surgery Raman spectra guidance for the human colon at different excitation wavelengths[J]. RSC Advances, 9, 40445-40454(2019).

    [189] Morais C L M, Lilo T, Ashton K M et al. Determination of meningioma brain tumour grades using Raman microspectroscopy imaging[J]. The Analyst, 144, 7024-7031(2019).

    [190] Feng X, Fox M C, Reichenberg J S et al. Superpixel Raman spectroscopy for rapid skin cancer margin assessment[J]. Journal of Biophotonics, 13, e201960109(2020). http://onlinelibrary.wiley.com/doi/full/10.1002/jbio.201960109

    [191] Feng X, Fox M C, Reichenberg J S et al. Biophysical basis of skin cancer margin assessment using Raman spectroscopy[J]. Biomedical Optics Express, 10, 104-118(2019).

    [192] Abramczyk H, Imiela A, Brozek-Pluska B et al. Aberrant protein phosphorylation in cancer by using Raman biomarkers[J]. Cancers, 11, 2017(2019).

    [193] Placzek F, Cordero Bautista E, Kretschmer S et al. Morpho-molecular ex vivo detection and grading of non-muscle-invasive bladder cancer using forward imaging probe based multimodal optical coherence tomography and Raman spectroscopy[J]. The Analyst, 145, 1445-1456(2020). http://pubs.rsc.org/en/content/articlepdf/2020/an/c9an01911a?page=search

    [194] Sato S, Sekine R, Kagoshima H et al. All-in-one Raman spectroscopy approach to diagnosis of colorectal cancer: analysis of spectra in the fingerprint regions[J]. Journal of the Anus, Rectum and Colon, 3, 84-90(2019).

    [195] Bury D. Morais C L M, Ashton K M, et al. Ex vivo Raman spectrochemical analysis using a handheld probe demonstrates high predictive capability of brain tumour status[J]. Biosensors, 9, 49(2019).

    [196] Liao C, Wang P, Huang C Y et al. In vivo and in situ spectroscopic imaging by a handheld stimulated Raman scattering microscope[J]. ACS Photonics, 5, 947-954(2018).

    [197] Nicolson F, Jamieson L E, Mabbott S et al. Multiplex imaging of live breast cancer tumour models through tissue using handheld surface enhanced spatially offset resonance Raman spectroscopy (SESORRS)[J]. Chemical Communications, 54, 8530-8533(2018).

    [198] Dai J H, He X, Li Z Y et al. Fiber-optic Raman spectrum sensor for fast diagnosis of esophageal cancer[J]. Photonic Sensors, 9, 53-59(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJ1903250001356B9EaH

    [199] Varkentin A, Mazurenka M, Blumenröther E et al. Trimodal system for in vivo skin cancer screening with combined optical coherence tomography-Raman and colocalized optoacoustic measurements[J]. Journal of Biophotonics, 11, e201700288(2018). http://www.ncbi.nlm.nih.gov/pubmed/29360199

    [200] Desroches J, Jermyn M, Pinto M et al[J]. A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy Scientific Reports, 8, 1792.

    [201] Han L M, Duan W J, Li X W et al. Surface-enhanced resonance Raman scattering-guided brain tumor surgery showing prognostic benefit in rat models[J]. ACS Applied Materials & Interfaces, 11, 15241-15250(2019).

    [202] Shams R, Picot F, Grajales D et al. Pre-clinical evaluation of an image-guided in situ Raman spectroscopy navigation system for targeted prostate cancer interventions[J]. International Journal of Computer Assisted Radiology and Surgery, 15, 867-876(2020).

    [203] McGregor H C, Short M A, Lam S et al. Development and in vivo test of a miniature Raman probe for early cancer detection in the peripheral lung[J]. Journal of Biophotonics, 11, e201800055(2018). http://onlinelibrary.wiley.com/doi/10.1002/jbio.201800055

    [204] Lin D, Qiu S F, Huang W et al. Autofluorescence and white light imaging-guided endoscopic Raman and diffuse reflectance spectroscopy for in vivo nasopharyngeal cancer detection[J]. Journal of Biophotonics, 11, e201700251(2018).

    [205] Xu H, Zhu Y K, Lu Y F et al. Development and biomedical application of Raman probe[J]. Laser & Optoelectronics Progress, 56, 110005(2019).

    Qi Yafeng, Liu Yuhong, Liu Dameng. Research Progress on Application of Raman Spectroscopy in Tumor Diagnosis[J]. Laser & Optoelectronics Progress, 2020, 57(22): 220001
    Download Citation