• Advanced Photonics
  • Vol. 3, Issue 6, 065001 (2021)
Christian Schimpf†、*, Santanu Manna*, Saimon F. Covre da Silva, Maximilian Aigner, and Armando Rastelli
Author Affiliations
  • Johannes Kepler University Linz, Institute of Semiconductor and Solid State Physics, Linz, Austria
  • show less
    DOI: 10.1117/1.AP.3.6.065001 Cite this Article Set citation alerts
    Christian Schimpf, Santanu Manna, Saimon F. Covre da Silva, Maximilian Aigner, Armando Rastelli. Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 K[J]. Advanced Photonics, 2021, 3(6): 065001 Copy Citation Text show less
    References

    [1] S. Pirandola et al. Advances in quantum cryptography. Adv. Opt. Photonics, 12, 1012-1236(2020).

    [2] X. Ma, J.-W. Pan. Security of quantum key distribution with realistic devices. Rev. Mod. Phys., 92, 025002(2020).

    [3] N. Gisin, R. Thew. Quantum communication. Nat. Photonics, 1, 165-171(2007).

    [4] H. J. Kimble. The quantum internet. Nature, 453, 1023-1030(2008).

    [5] A. K. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 67, 661-663(1991).

    [6] C. H. Bennett, G. Brassard, N. D. Mermin. Quantum cryptography without Bell’s theorem. Phys. Rev. Lett., 68, 557-559(1992).

    [7] A. Acín et al. Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett., 98, 230501(2007).

    [8] N. Gisin et al. Quantum cryptography. Rev. Mod. Phys., 74, 145-195(2002).

    [9] S. Wengerowsky et al. Passively stable distribution of polarisation entanglement over 192 km of deployed optical fibre. NPJ Quantum Inf., 6, 5(2020).

    [10] J. Yin et al. Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature, 582, 501-505(2020).

    [11] X.-Y. Pan et al. Temperature insensitive type II quasi-phasematched spontaneous parametric downconversion. Appl. Phys. Lett., 119, 021107(2021).

    [12] J. Schneeloch et al. Introduction to the absolute brightness and number statistics in spontaneous parametric down-conversion. J. Opt., 21, 043501(2019).

    [13] O. Benson et al. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett., 84, 2513-2516(2000).

    [14] M. Gurioli et al. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices. Nat. Mater., 18, 799-810(2019).

    [15] D. Huber et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand. Phys. Rev. Lett., 121, 033902(2018).

    [16] C. Schimpf et al. Quantum cryptography with highly entangled photons from semiconductor quantum dots. Sci. Adv., 7, aebe8905(2021).

    [17] Y. H. Huo, A. Rastelli, O. G. Schmidt. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate. Appl. Phys. Lett., 102, 152105(2013).

    [18] L. Schweickert et al. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett., 112, 093106(2018).

    [19] F. Basso Basset et al. Quantum key distribution with entangled photons generated on demand by a quantum dot. Sci. Adv., 7, eabe6379(2021).

    [20] R. Hafenbrak et al. Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K. New J. Phys., 9, 315(2007).

    [21] M. Müller et al. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics, 8, 224-228(2014).

    [22] K. D. Timmerhaus, R. Reed. Cryogenic Engineering(2007).

    [23] J. P. Jahn et al. An artificial Rb atom in a semiconductor with lifetime-limited linewidth. Phys. Rev. B, 92, 245439(2015).

    [24] K. D. Jöns et al. Two-photon interference from two blinking quantum emitters. Phys. Rev. B, 96, 075430(2017).

    [25] R. J. Warburton et al. Optical emission from a charge-tunable quantum ring. Nature, 405, 926-929(2000).

    [26] L. Zhai et al. Low-noise GaAs quantum dots for quantum photonics. Nat. Commun., 11, 4745(2020).

    [27] N. Somaschi et al. Near-optimal single-photon sources in the solid state. Nat. Photonics, 10, 340-345(2016).

    [28] S. Stufler et al. Two-photon Rabi oscillations in a single InxGa1-xAs GaAs quantum dot. Phys. Rev. B, 73, 125304(2006). https://doi.org/10.1103/PhysRevB.73.125304

    [29] V. Giesz et al. Cavity-enhanced two-photon interference using remote quantum dot sources. Phys. Rev. B, 92, 161302(2015).

    [30] M. Reindl et al. Phonon-assisted two-photon interference from remote quantum emitters. Nano Lett., 17, 4090-4095(2017).

    [31] R. Keil et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat. Commun., 8, 15501(2017).

    [32] A. J. Hudson et al. Coherence of an entangled exciton-photon state. Phys. Rev. Lett., 99, 266802(2007).

    [33] D. F. V. James et al. Measurement of qubits. Phys. Rev. A, 64, 052312(2001).

    [34] R. Jozsa. Fidelity for mixed quantum states. J. Mod. Opt., 41, 2315-2323(1994).

    [35] C. C. W. Lim et al. Security analysis of quantum key distribution with small block length and its application to quantum space communications. Phys. Rev. Lett., 126, 100501(2021).

    [36] J. Liu et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol., 14, 586-593(2019).

    [37] H. Wang et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett., 122, 113602(2019).

    [38] R. Trotta et al. Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays. Phys. Rev. Lett., 114, 150502(2015).

    [39] J. Martinez-Mateo et al. Demystifying the information reconciliation protocol cascade. Quantum Inf. Comput., 15, 453-477(2015).

    [40] Z. Yuan et al. 10-Mb/s quantum key distribution. J. Lightwave Technol., 36, 3427-3433(2018).

    Christian Schimpf, Santanu Manna, Saimon F. Covre da Silva, Maximilian Aigner, Armando Rastelli. Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 K[J]. Advanced Photonics, 2021, 3(6): 065001
    Download Citation