• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 5, 669 (2021)
Qingying YANG1、*, Cunfeng CHENG1、2, Yu SUN1、2, Anwen LIU1、2, and Shuiming HU1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2021.05.011 Cite this Article
    YANG Qingying, CHENG Cunfeng, SUN Yu, LIU Anwen, HU Shuiming. Cavity-enhanced Raman spectroscopy for trace hydrogen gas sensing[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 669 Copy Citation Text show less
    References

    [1] Balat M. Potential importance of hydrogen as a future solution to environmental and transportation problems [J]. International Journal of Hydrogen Energy, 2008, 33(15): 4013-4029.

    [2] Buttner W J, Post M B, Burgess R, et al. An overview of hydrogen safety sensors and requirements [J]. International Journal of Hydrogen Energy, 2011, 36(3): 2462-2470.

    [3] Spencer C L, Watson V, Hippler M. Trace gas detection of molecular hydrogen H2 by photoacoustic stimulated Raman spectroscopy (PARS) [J]. Analyst, 2012, 137(6): 1384-1388.

    [4] Traidia A, Chatzidouros E, Jouiad M. Review of hydrogen-assisted cracking models for application to service lifetime prediction and challenges in the oil and gas industry [J]. Corrosion Reviews, 2018, 36(4): 323-347.

    [5] Smith T W, Hippler M. Cavity-enhanced Raman spectroscopy in the biosciences: In?situ, multicomponent, and isotope selective gas measurements to study hydrogen production and consumption by escherichia coli [J]. Analytical Chemistry, 2017, 89(3): 2147-2154.

    [6] Hanf S, Bgzi T, Keiner R, et al. Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath [J]. Analytical Chemistry, 2014, 87(2): 982-988.

    [7] Sieburg A, Schneider S, Yan D, et al. Monitoring of gas composition in a laboratory biogas plant using cavity enhanced Raman spectroscopy [J]. Analyst, 2018, 143(6): 1285-1504.

    [8] Wang P Y, Chen W G, Wang J X, et al. Multigas analysis by cavity-enhanced Raman spectroscopy for power transformer diagnosis [J]. Analytical Chemistry, 2020, 92(8): 5969-5977.

    [9] Matisová E, Hrouzková S. Analysis of endocrine disrupting pesticides by capillary GC with mass spectrometric detection [J]. International Journal of Environmental Research and Public Health, 2012, 9(9): 3166-3196.

    [10] Yang Y, Lin M Q, Tang J, et al. Derivatization gas chromatography negative chemical ionization mass spectrometry for the analysis of trace organic pollutants and their metabolites in human biological samples [J]. Analytical and Bioanalytical Chemistry, 2020, 412(25): 6679-6690.

    [11] Chauhan P S, Bhattacharya S. Hydrogen gas sensing methods, materials, and approach to achieve parts per billion level detection: A review [J]. International Journal of Hydrogen Energy, 2019, 44(47): 26076-26099.

    [12] Xing K M, Yang K, Zhang L, et al. Simultaneous detection of CO and CO2 in cigarette mainstream smoke based on TDLAS technology [J]. Chinese Journal of Quantum Electronics, 2017, 34(1): 81-87.

    [13] Xu X Z, Zhao W X, Dong M L, et al. Monitoring aerosol extinction with cavity enhanced/ring-down spectroscopy: A brief review [J]. Chinese Journal of Quantum Electronics, 2014, 31(4): 477-488.

    [14] Crosson E R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor [J]. Applied Physics B, 2008, 92(3): 403-408.

    [15] Martin N A, Ferracci V, Cassidy N, et al. The application of a cavity ring-down spectrometer to measurements of ambient ammonia using traceable primary standard gas mixtures [J]. Applied Physics B, 2016, 122(8): 219-229.

    [16] Wang C, Sahay P. Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits [J]. Sensors, 2009, 9(10): 8230-8262.

    [17] Wang P Y, Chen W G, Wan F, et al. Cavity-enhanced Raman spectroscopy with optical feedback frequency-locking for gas sensing [J]. Optics Express, 2019, 27(23): 33312-33325.

    [18] Wang P, Chen W, Wan F, et al. A review of cavity-enhanced Raman spectroscopy as a gas sensing method [J]. Applied Spectroscopy Reviews, 2019, 14(2):1-25.

    [19] Niklas C, Wackerbarth H, Ctistis G. A short review of cavity-enhanced Raman spectroscopy for gas analysis [J]. Sensors, 2021, 21(5): 1698-1718.

    [20] Ismail N, Kores C C, Geskus D, et al. Fabry-Pérot resonator: Spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity [J]. Optics Express, 2016, 24(15): 16366-16389.

    [21] Weller L, Kuvshinov M, Hochgreb S. Gas-phase Raman spectroscopy of non-reacting flows: Comparison between free-space and cavity-based spontaneous Raman emission [J]. Applied Optics, 2019, 58(10): 92-103.

    [22] Taylor D J, Glugla M, Penzhorn R D. Enhanced Raman sensitivity using an actively stabilized external resonator [J]. Review of Scientific Instruments, 2001, 72(4): 1970-1976.

    [23] Hippler M. Cavity-enhanced Raman spectroscopy of natural gas with optical feedback cw-diode lasers [J]. Analytical Chemistry, 2015, 87(15): 7803-7809.

    [24] Black E D. An introduction to Pound-Drever-Hall laser frequency stabilization [J]. American Journal of Physics, 2000, 69(1): 79-87.

    [25] Ma L S, Ye J, Dubé P, Hall J L. Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: Theory and application to overtone transitions of C2H2 and C2HD [J]. Journal of the Optical Society of America B, 1999, 16(12): 2255-2268.

    [26] Fenner W R, Hyatt H A, Kellam J M, et al. Raman cross section of some simple gases [J]. Journal of the Optical Society of America, 1973, 63(1): 73-77.

    YANG Qingying, CHENG Cunfeng, SUN Yu, LIU Anwen, HU Shuiming. Cavity-enhanced Raman spectroscopy for trace hydrogen gas sensing[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 669
    Download Citation