[1] J K DENG, J GUO, N N XUE et al. ArcFace: additive angular margin loss for deep face recognition, 4685-4694(2020).
[2] M YE, J B SHEN, G J LIN et al. Deep learning for person re-identification: a survey and outlook. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 2872-2893(2022).
[3] 3高毅. 基于步态识别的跨场景多目标跟踪算法[J]. 控制工程, 2021, 28(7): 1375-1381.GAOY. Multi-camera multi-target tracking algorithm based on gait recognition[J]. Control Engineering of China, 2021, 28(7): 1375-1381.(in Chinese)
[4] J K ZHENG, X C LIU, W LIU et al. Gait recognition in the wild with dense 3D representations and A benchmark, 20196-20205(2022).
[5] Y SUN, Q BAO, W LIU et al. Monocular, one-stage, regression of multiple 3D people, 11159-11168(2022).
[6] X CHEN, J WENG, W LU et al. Multi-gait recognition based on attribute discovery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 1697-1710(2018).
[7] Z F WU, Y Z HUANG, L WANG et al. A comprehensive study on cross-view gait based human identification with deep CNNs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 209-226(2017).
[8] Y W HE, J P ZHANG, H M SHAN et al. Multi-task GANs for view-specific feature learning in gait recognition. IEEE Transactions on Information Forensics and Security, 14, 102-113(2019).
[9] R J LIAO, C S CAO, E B GARCIA et al.
[10] T WOLF, M BABAEE, G RIGOLL. Multi-view gait recognition using 3D convolutional neural networks, 4165-4169(2016).
[11] X H WU, W Z AN, S Q YU et al. Spatial-temporal graph attention network for video-based gait recognition(2020).
[12] H Q CHAO, K WANG, Y W HE et al. GaitSet: cross-view gait recognition through utilizing gait As a deep set. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 3467-3478(2022).
[13] S Q YU, D L TAN, T N TAN. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition, 441-444(2006).
[14] Z ZHONG, L ZHENG, G L KANG et al. Random erasing data augmentation. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 13001-13008(2020).
[15] R LIU, J LEHMAN, P MOLINO et al. An intriguing failing of convolutional neural networks and the CoordConv solution, 9628-9639(2018).
[16] 16韩东岳, 桑海峰. 利用动态步态图进行步态识别[J]. 电子测量与仪器学报, 2022, 36(2): 139-145.HAND Y, SANGH F. Gait recognition based on dynamic gait image[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(2): 139-145.(in Chinese)
[17] 17曾维, 何刚强, 罗伟洋, 等. 基于ICNet模型的人体步态识别研究[J]. 电子测量技术, 2022, 45(4): 120-125.ZENGW, HEG Q, LUOW Y, et al. Research on gait recognition of human body based on ICNet model[J]. Electronic Measurement Technology, 2022, 45(4): 120-125.(in Chinese)
[18] 18周潇涵, 王修晖. 基于非对称双路识别网络的步态识别方法[J]. 计算机工程与应用, 2022, 58(4): 150-156. doi: 10.3778/j.issn.1002-8331.2008-0355ZHOUX H, WANGX H. Novel gait recognition method based on asymmetric two-path network[J]. Computer Engineering and Applications, 2022, 58(4): 150-156.(in Chinese). doi: 10.3778/j.issn.1002-8331.2008-0355
[19] 19胡少晖, 王修晖, 刘砚秋. 基于多支路残差深度网络的跨视角步态识别方法[J]. 模式识别与人工智能, 2021, 34(5): 455-462.HUSH H, WANGX H, LIUY Q. Cross-view gait recognition method based on multi-branch residual deep network[J]. Pattern Recognition and Artificial Intelligence, 2021, 34(5): 455-462.(in Chinese)
[20] J KOVAČ, V ŠTRUC, P PEER. Frame-based classification for cross-speed gait recognition. Multimedia Tools and Applications, 78, 5621-5643(2019).
[21] 21罗正平, 刘延钧, 杨天奇. 光流分量分解的步态识别[J]. 计算机科学, 2016, 43(9): 295-300. doi: 10.11896/j.issn.1002-137X.2016.09.059LUOZH P, LIUY J, YANGT Q. Gait recognition based on decomposition of optical flow components[J]. Computer Science, 2016, 43(9): 295-300.(in Chinese). doi: 10.11896/j.issn.1002-137X.2016.09.059