• Chinese Optics Letters
  • Vol. 20, Issue 9, 091602 (2022)
Yu Cao, Li Chong, Ke-Hui Wu, Lu-Qian You, Sen-Sen Li, and Lu-Jian Chen*
Author Affiliations
  • Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
  • show less
    DOI: 10.3788/COL202220.091602 Cite this Article Set citation alerts
    Yu Cao, Li Chong, Ke-Hui Wu, Lu-Qian You, Sen-Sen Li, Lu-Jian Chen. Dynamic coloration of polymerized cholesteric liquid crystal networks by infiltrating organic compounds[J]. Chinese Optics Letters, 2022, 20(9): 091602 Copy Citation Text show less
    References

    [1] H. K. Bisoyi, Q. Li. Liquid crystals: versatile self-organized smart soft materials. Chem. Rev., 122, 4887(2021).

    [2] C. L. Yuan, W. B. Huang, X. Q. Wang, D. Shen, Z. G. Zheng. Electrically tunable helicity of cholesteric heliconical superstructure. Chin. Opt. Lett., 18, 080005(2020).

    [3] Y. H. Ge, Y. M. Lan, X. R. Li, Y. W. Shan, Y. J. Yang, S. S. Li, C. Y. Yang, L. J. Chen. Polymerized cholesteric liquid crystal microdisks generated by centrifugal microfluidics towards tunable laser emissions. Chin. Opt. Lett., 18, 080006(2020).

    [4] Y. S. Zhang, Z. Q. Wang, W. C. Chuang, S. A. Jiang, T. S. Mo, J. D. Lin, C. R. Lee. Programmable engineering of sunlight-fueled, full-wavelength-tunable, and chirality-invertible helical superstructures. ACS Appl. Mater. Interfaces, 13, 55550(2021).

    [5] Z. X. Li, Y. P. Ruan, P. Chen, J. Tang, W. Hu, K. Y. Xia, Y. Q. Lu. Liquid crystal devices for vector vortex beams manipulation and quantum information applications. Chin. Opt. Lett., 19, 112601(2021).

    [6] R. Balamurugan, J. H. Liu. A review of the fabrication of photonic band gap materials based on cholesteric liquid crystals. React. Funct. Polym., 105, 9(2016).

    [7] X. J. Liu, L. Qin, Y. Y. Zhan, M. Chen, Y. L. Yu. Phototuning of structural colors in cholesteric liquid crystals. Acta Chim. Sin., 78, 478(2020).

    [8] C. T. Xu, P. Chen, Y. H. Zhang. Tunable band-pass optical vortex processor enabled by wash-out-refill chiral superstructures. Appl. Phys. Lett., 118, 151102(2021).

    [9] Y. Kim, N. Tamaoki. Photoresponsive chiral dopants: light-driven helicity manipulation in cholesteric liquid crystals for optical and mechanical functions. ChemPhotoChem, 3, 284(2019).

    [10] S. Hussain, S. Y. Park. Optical glucose biosensor based on photonic interpenetrating polymer network with solid-state cholesteric liquid crystal and cationic polyelectrolyte. Sens. Actuators B Chem., 316, 128099(2020).

    [11] K. G. Noh, S. Y. Park. Biosensor array of interpenetrating polymer network with photonic film templated from reactive cholesteric liquid crystal and enzyme-immobilized hydrogel polymer. Adv. Funct. Mater., 28, 1707562(2018).

    [12] C. K. Chang, C. M. W. Bostiaansen, D. J. Broer, H. L. Kou. Alcohol-resonsive, hydrogen-bonded, cholesteric liquid-crystal networks. Adv. Funct. Mater., 22, 2855(2012).

    [13] J. E. Stumpel, C. Wouters, N. Herzer, J. Ziegler, D. J. Broer, C. W. M. Bastiaansen, A. P. H. J. Schenning. An optical sensor for volatile amines based on an inkjet-printed, hydrogen-bonded, cholesteric liquid crystalline film. Adv. Opt. Mater., 2, 459(2014).

    [14] Y. H. Yang, D. Zhou, X. J. Liu, Y. J. Liu, S. Q. Liu, P. X. Miao, Y. C. Shi, W. M. Sun. Optical fiber sensor based on a cholesteric liquid crystal film for mixed VOC sensing. Opt. Express, 28, 31872(2020).

    [15] J. B. Guo, H. Cao, J. Wei, D. W. Zhang, F. Liu, G. H. Pan, D. Y. Zhao, W. L. He, H. Yang. Polymer stabilized liquid crystal films reflecting both right- and left-circularly polarized light. Appl. Phys. Lett., 93, 201901(2008).

    [16] W. S. Li, C. Yang, B. Luo, Z. Y. Wang, X. Q. Wang, Y. K. Bo, S. S. Li, H. Y. Xu, L. J. Chen. Effect of preparation parameters on the performance pf polymer-stabilized cholesteric liquid crystals for laser emission. Chin. Opt. Lett., 12, 111602(2014).

    [17] C. L. Sun, J. G. Lu. Effect of sectional polymerization process on tunable twist structure liquid crystal filters. Crystals, 9, 268(2019).

    [18] L. Y. Mo, H. T. Sun, A. H. Liang, X. F. Jiang, L. L. Shui, G. F. Zhou, L. T. de Haan, X. W. Hu. Multi-stable cholesteric crystal windows with four optical states. Liq. Cryst., 49, 289(2021).

    [19] Y. Li, D. Luo. Fabrication and application of 1D micro-cavity film made by cholesteric liquid crystal and reactive mesogen. Opt. Mater. Express, 6, 691(2016).

    [20] X. Y. Zhan, H. P. Fan, Y. Li, Y. J. Liu, D. Luo. Low threshold polymerised cholesteric liquid crystal film lasers with red, green and blue colour. Liq. Cryst., 46, 970(2019).

    [21] Z. K. Zhu, Y. Gao, J. G. Lu. Multi-pitch liquid crystal filters with single layer polymer template. Polymers, 13, 2521(2021).

    [22] N. Shen, M. T. Hu, X. Q. Wang, P. Z. Sun, C. L. Yuan, B. H. Liu, D. Shen, Z. G. Zheng, Q. Li. Cholesteric soft matter molded helical photonic architecture toward volatility monitoring of organic solvent. Adv. Photon. Res., 2, 2100018(2021).

    [23] Y. W. Shan, L. Q. You, H. K. Bisoyi, Y. J. Yang, Y. H. Ge, K. J. Che, S. S. Li, L. J. Chen, Q. Li. Annular structural colors from bowl-like shriveled photonic microshells of cholesteric liquid crystals. Adv. Opt. Mater., 8, 2000692(2020).

    [24] K. N. Fan. Physical Chemistry(2021).

    [25] J. D. Lin, C. L. Chu, H. Y. Lin, B. You, C. T. Horng, S. Y. Huang, T. S. Mo, C. Y. Huang, C. R. Lee. Wide-band tunable photonic bandgaps based on nematic-refilling cholesteric liquid crystal polymer template samples. Opt. Mater. Express, 5, 1419(2015).

    [26] D. J. Broer, J. Lub, G. N. Mol. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature, 378, 467(1995).

    [27] J. Kim, H. Kim, S. Kim, S. Choi, W. Jang, J. Kim, J. H. Lee. Broadening the reflection bandwidth of polymer-stabilized cholesteric liquid crystal via a reactive surface coating layer. Appl. Opt., 56, 5731(2017).

    [28] H. Kim, J. Kim, S. Kim, J. Kim, J. H. Lee. Effect of the radio between monoacrylate and diacrylate reactive mesogen on the transmission spectrum of polymer-stabilized cholesteric liquid crystal. Opt. Mater. Express, 8, 97(2018).

    [29] L. L. Ma, S. B. Wu, W. Hu, C. Liu, P. Chen, H. Qian, Y. D. Wang, L. F. Chi, Y. Q. Lu. Self-assembled asymmetric microlenses for four-dimensional visual imaging. ACS Nano, 13, 13709(2019).

    [30] X. Y. Fan, W. Y. Ma, Y. M. Zhang, C. T. Xu, H. Ren, W. M. Han, C. Y. Chen, W. Hu. Broadband spatial polarization processing of light via a photopatterned dichroic medium. Appl. Phys. Lett., 120, 041103(2022).

    Data from CrossRef

    [1] Shi-Long Li, Shi-Hao Wang, Wei-Cheng Luo, Lu-Qian You, Sen-Sen Li, Lu-Jian Chen. Optofluidic tunable broadband distributed Bragg reflector based on liquid crystal polymer composites. Optics Express, 30, 33603(2022).

    Yu Cao, Li Chong, Ke-Hui Wu, Lu-Qian You, Sen-Sen Li, Lu-Jian Chen. Dynamic coloration of polymerized cholesteric liquid crystal networks by infiltrating organic compounds[J]. Chinese Optics Letters, 2022, 20(9): 091602
    Download Citation