• Photonics Research
  • Vol. 9, Issue 4, 04000596 (2021)
Yanmei Cao1, Ezgi Sahin1、2, Ju Won Choi1, Peng Xing1, George F. R. Chen1, D. K. T. Ng3, Benjamin J. Eggleton4、5, and Dawn T. H. Tan1、*
Author Affiliations
  • 1Photonics Devices and Systems Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
  • 2Current address: Photonic Systems Laboratory (PHOSL), Ecole Polytechnique Fédérale de Lausanne, STI-IEL, Station 11, CH-1015 Lausanne, Switzerland
  • 3Institute of Microelectronics, A*STAR, 2 Fusionopolis Way, #08-02, Innovis Tower, Singapore 138634, Singapore
  • 4Institute of Photonics and Optical Science, School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
  • 5The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, New South Wales 2006, Australia
  • show less
    References
    [1] Z. Jiang, X.-C. Zhang. Single-shot spatiotemporal terahertz field imaging. Opt. Lett., 23, 1114-1116(1998).
    [2] R. Knappe. Applications of picosecond lasers and pulse-bursts in precision manufacturing. Proc. SPIE, 8243, 82430I(2012).
    [3] D. A. Smith, M. W. Maeda, J. J. Johnson, J. S. Patel, M. A. Saifi, A. Von Lehman. Acoustically tuned erbium-erbium-doped fiber ring laser. Opt. Lett., 16, 387-389(1991).
    [4] L. Huang, X. Song, P. Chang, W. Peng, W. Zhang, F. Gao, F. Bo, G. Zhang, J. Xu. All-fiber tunable laser based on an acousto-optic tunable filter and a tapered fiber. Opt. Express, 24, 7449-7455(2016).
    [5] J. Yang, S. Tjin, N. Q. Ngo. Wideband tunable linear-cavity fiber laser source using strain-induced chirped fiber Bragg grating. Opt. Laser Technol., 36, 561-565(2004).
    [6] B. Mason, G. A. Fish, S. P. DenBaars, L. A. Coldren. Widely tunable sampled grating DBR laser with integrated electroabsorption modulator. IEEE Photon. Technol. Lett., 11, 638-640(1999).
    [7] Y. Ding, M. Pu, L. Liu, J. Xu, C. Peucheret, X. Zhang, D. Huang, H. Ou. Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure. Opt. Express, 19, 6462-6470(2011).
    [8] L. Chen, N. Sherwood-Droz, M. Lipson. Compact bandwidth-tunable microring resonators. Opt. Lett., 32, 3361-3363(2007).
    [9] J. Yao, M. C. Wu. Bandwidth-tunable add–drop filters based on micro-electro-mechanical-system actuated silicon microtoroidal resonators. Opt. Lett., 34, 2557-2559(2009).
    [10] V. Liu, Y. Jiao, D. A. B. Miller, S. Fan. Design methodology for compact photonic-crystal-based wavelength division multiplexers. Opt. Lett., 36, 591-593(2011).
    [11] M. R. Paiam, R. I. MacDonald. Design of phased-array wavelength division multiplexers using multimode interference couplers. Appl. Opt., 36, 5097-5108(1997).
    [12] J. E. Carlstrom, R. L. Plambeck, D. D. Thornton. A continuously tunable 65–15-GHz Gunn oscillator. IEEE Trans. Microw. Theory Tech., 33, 610-619(1985).
    [13] K. L. Vodopyanov, J. P. Maffetone, I. Zwieback, W. Ruderma. AgGaS2 optical parametric oscillator continuously tunable from 3.9 to 11.3 μm. Appl. Phys. Lett., 75, 1204-1206(1999).
    [14] G. P. Agrawal. Nonlinear Fiber Optics(2013).
    [15] B. U. Sohn, J. W. Choi, D. K. T. Ng, D. T. H. Tan. Optical nonlinearities in ultra-silicon-rich nitride characterized using z-scan measurements. Sci. Rep., 9, 10364(2019).
    [16] J. W. Choi, B. U. Sohn, G. F. R. Chen, D. K. T. Ng, D. T. H. Tan. Soliton-effect optical pulse compression in CMOS-compatible ultra-silicon-rich nitride waveguides. APL Photon., 4, 110804(2019).
    [17] E. Sahin, A. Blanco-Redondo, P. Xing, D. K. T. Ng, C. E. Png, D. T. H. Tan, B. J. Eggleton. Bragg soliton compression and fission on CMOS-compatible ultra-silicon-rich nitride. Laser Photon. Rev., 13, 1900114(2019).
    [18] T. Wang, D. K. T. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, D. T. H. Tan. Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides. Laser Photon. Rev., 9, 498-506(2015).
    [19] C. M. Chen, P. L. Kelley. Nonlinear pulse compression in optical fibers: scaling laws and numerical analysis. J. Opt. Soc. Am. B, 19, 1961-1967(2002).
    [20] T. Middelmann, A. Walkov, G. Bartl, R. Schödel. Thermal expansion coefficient of single-crystal silicon from 7 K to 293 K. Phys. Rev. B, 92, 174113(2015).
    [21] B. J. Frey, D. B. Leviton, T. J. Madison. Temperature-dependent refractive index of silicon and germanium. Proc. SPIE, 6273, 62732J(2006).
    [22] A. Arbabi, L. L. Goddard. Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances. Opt. Lett., 38, 3878-3881(2013).
    [23] W. Zhang, J. Yao. A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing. Nat. Commun., 9, 1396(2018).
    [24] G. Lenz, B. J. Eggleton. Adiabatic Bragg soliton compression in nonuniform grating structures. J. Opt. Soc. Am. B, 15, 2979-2985(1998).
    [25] R. E. Slusher, B. J. Eggleton, T. A. Strasser, C. M. de Sterke. Nonlinear pulse reflections from chirped fiber gratings. Opt. Express, 3, 465-475(1998).
    [26] D. T. H. Tan, K. J. A. Ooi, D. K. T. Ng. Nonlinear optics on silicon-rich nitride-a high nonlinear figure of merit CMOS platform. Photon. Res., 6, B50-B66(2018).
    [27] K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, D. T. H. Tan. Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge. Nat. Commun., 8, 13878(2017).
    [28] H. G. Winful. Pulse-compression in optical fiber filters. Appl. Phys. Lett., 46, 527-529(1985).
    [29] B. J. Eggleton, C. M. de Sterke, R. E. Slusher. Bragg solitons in the nonlinear Schrodinger limit: experiment and theory. J. Opt. Soc. Am. B, 16, 587-599(1999).
    [30] B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, J. E. Sipe. Bragg grating solitons. Phys. Rev. Lett., 76, 1627-1630(1996).
    [31] E. Sahin, A. Blanco-Redondo, D. K. T. Ng, C. E. Png, B. J. Eggleton, D. T. H. Tan. Supercontinuum enhancement using Bragg solitons on a CMOS-compatible chip. Proc. SPIE, 11026, 1102607(2019).
    Copy Citation Text
    Yanmei Cao, Ezgi Sahin, Ju Won Choi, Peng Xing, George F. R. Chen, D. K. T. Ng, Benjamin J. Eggleton, Dawn T. H. Tan. Thermo-optically tunable spectral broadening in a nonlinear ultra-silicon-rich nitride Bragg grating[J]. Photonics Research, 2021, 9(4): 04000596
    Download Citation
    Category: Integrated Optics
    Received: Sep. 28, 2020
    Accepted: Feb. 3, 2021
    Published Online: Apr. 6, 2021
    The Author Email: Dawn T. H. Tan (dawn_tan@sutd.edu.sg)