• Chinese Optics Letters
  • Vol. 19, Issue 9, 091202 (2021)
Hongwei Liang1, Yu Sun1, Zhen Huang2, Chunlei Jiang1、**, Zihua Zhang3, and Lingling Kan1、*
Author Affiliations
  • 1College of Electrical and Information Engineering, Northeast Petroleum University, Daqing 163318, China
  • 2School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
  • 3Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
  • show less
    DOI: 10.3788/COL202119.091202 Cite this Article Set citation alerts
    Hongwei Liang, Yu Sun, Zhen Huang, Chunlei Jiang, Zihua Zhang, Lingling Kan. Reconstruction of Fabry–Perot cavity interferometer nanometer micro-displacement based on Hilbert transform[J]. Chinese Optics Letters, 2021, 19(9): 091202 Copy Citation Text show less
    References

    [1] Y. Y. Yang, Y. X. Zhang, Z. H. Liu, J. Yang, L. B. Yuan. Twin-core fiber-based sensor for measuring the strain and bending simultaneously. International Symposium on Photoelectronic Detection and Imaging 2013: Fiber Optic Sensors and Optical Coherence Tomography(2013).

    [2] A. D. Kersey, D. A. Jackson, M. Corke. A simple fiber Fabry–Perot sensor. Opt. Commun., 45, 71(1983).

    [3] Z. G. Wang, W. T. Zhang, J. Han, W. Z. Huang, F. Li. Simplified design of diaphragm-based fiber optic extrinsic Fabry–Perot accelerometer. Proc. SPIE, 9274, 927417(2014).

    [4] X. K. Yu, N. F. Song, J. M. Song. A novel method for simultaneous measurement of temperature and strain based on EFPI/FBG. Opt. Commun., 459, 6(2020).

    [5] Y. G. Liu, D. Q. Yang, Y. X. Wang, T. Zhang, M. Shao, D. K. Yu, H. W. Fu, Z. N. Jia. Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure. Opt. Commun., 443, 166(2019).

    [6] H. Li, Q. Zhao, S. Jiang, J. Ni, C. Wang. FP cavity and FBG cascaded optical fiber temperature and pressure sensor. Chin. Opt. Lett., 17, 040603(2019).

    [7] E. Kendir, S. Yaltkaya. Variations of magnetic field measurement with an extrinsic Fabry–Perot interferometer by double-beam technique. Measurement, 151, 107217(2020).

    [8] L. C. Zhang, Y. Jiang, J. S. Jia, P. Wang, S. M. Wang, L. Jiang. Fiber-optic micro vibration sensors fabricated by a femtosecond laser. Opt. Lasers Eng., 110, 207(2018).

    [9] K. Tian, J. Yu, X. Wang, H. Zhao, D. Liu, E. Lewis, G. Farrell, P. Wang. Miniature Fabry–Perot interferometer based on a movable microsphere reflector. Opt. Lett., 45, 787(2020).

    [10] Z. Qu, P. Lu, Y. Li, X. Fu, W. Zhang, D. Liu, J. Zhang. Low-frequency acoustic Fabry–Pérot fiber sensor based on a micromachined silicon nitride membrane. Chin. Opt. Lett., 18, 101201(2020).

    [11] K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, R. O. Claus. Quadrature phase-shifted, extrinsic Fabry–Perot optical fiber sensors. Opt. Lett., 16, 273(1991).

    [12] H. C. Seat, E. Ouisse, V. Metivier. Demonstration of a dual-cavity extrinsic fiber Fabry–Perot interferometer for vibration displacement measurements. Proceedings of SPIE the International Society for Optical Engineering(2002).

    [13] W. Xia, C. Li, H. Hao, Y. Wang, X. Ni, D. Guo, M. Wang. High-accuracy vibration sensor based on a Fabry–Perot interferometer with active phase-tracking technology. Appl. Opt., 57, 659(2018).

    [14] H. Liao, P. Lu, L. Liu, D. M. Liu, J. S. Zhang. Phase demodulation of Fabry–Perot interferometer-based acoustic sensor utilizing tunable filter with two quadrature wavelengths. Proc. SPIE, 10110, 101101J(2017).

    [15] M. F. Domingues, C. Tavares, N. Alberto, A. Radwan, P. Andre, P. Antunes. High rate dynamic monitoring with Fabry–Perot interferometric sensors: an alternative interrogation technique targeting biomedical applications. Sensors, 19, 4744(2019).

    [16] A. D. Gomes, M. S. Ferreira, J. Bierlich, J. Kobelke, M. Rothhardt, H. Bartelt, O. Frazo. Optical harmonic Vernier effect: a new tool for high performance interferometric fibre sensors. Sensors, 19, 5431(2019).

    [17] C. Zhu, Y. Z. Chen, Y. Du, Y. Y. Zhuang, F. X. Liu, R. E. Gerald, J. Huang. A displacement sensor with centimeter dynamic range and submicrometer resolution based on an optical interferometer. IEEE Sens. J., 17, 5523(2017).

    [18] M. R. Islam, M. M. Ali, M. H. Lai, K. S. Lim, H. Ahmad. Chronology of Fabry–Perot interferometer fiber-optic sensors and their applications: a review. Sensors, 14, 7451(2014).

    [19] S. Pullteap, H. C. Seat. An extrinsic fiber Fabry–Perot interferometer for dynamic displacement measurement. Photon. Sens., 5, 50(2014).

    [20] L. Yuan, L. Zhou. Fiber optic differential interferometer. IEEE Trans. Instrum. Meas., 49, 779(2000).

    [21] T. Ito. Precise measurement of the change in the optical length of a fiber-optic Fabry–Perot interferometer. Appl. Opt., 25, 1072(1986).

    [22] Z. Zhang, C. Li, Z. Huang. Vibration measurement based on multiple Hilbert transform for self-mixing interferometry. Opt. Commun., 436, 192(2019).

    Data from CrossRef

    [1] Hongwei Liang, Shiwei Liu, Sihan Chen, Zhen Huang, Chunlei Jiang, Peng Chen, Lingling Kan. Real-time displacement reconstruction by an orthogonal Fabry–Perot interferometer. Applied Optics, 60, 7064(2021).

    Hongwei Liang, Yu Sun, Zhen Huang, Chunlei Jiang, Zihua Zhang, Lingling Kan. Reconstruction of Fabry–Perot cavity interferometer nanometer micro-displacement based on Hilbert transform[J]. Chinese Optics Letters, 2021, 19(9): 091202
    Download Citation