• Laser & Optoelectronics Progress
  • Vol. 59, Issue 22, 2201001 (2022)
Yiming Guo1、2、3, Xiaoqing Wu1、3、*, Changdong Su1、2、3, Shitai Zhang1、2、3, Cuicui Bi1、2、3, and Zhiwei Tao1、2
Author Affiliations
  • 1Key Laboratory of Atmospheric Optics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
  • 2University of Science and Technology of China, Hefei 230026, Anhui, China
  • 3Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, Anhui, China
  • show less
    DOI: 10.3788/LOP202259.2201001 Cite this Article Set citation alerts
    Yiming Guo, Xiaoqing Wu, Changdong Su, Shitai Zhang, Cuicui Bi, Zhiwei Tao. Rapid Restoration of Turbulent Degraded Images Based on Bidirectional Multi-Scale Feature Fusion[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2201001 Copy Citation Text show less
    References

    [1] den Dekker A J, van den Bos A. Resolution: a survey[J]. Journal of the Optical Society of America A, 14, 547-557(1997).

    [2] Labeyrie A. Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images[J]. SPIE Milestone Series, 28, 427-429(1970).

    [3] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 3, 27-29(1978).

    [4] Primot J, Rousset G, Fontanella J C. Deconvolution from wave-front sensing: a new technique for compensating turbulence-degraded images[J]. Journal of the Optical Society of America A, 7, 1598-1608(1990).

    [5] Ayers G R, Dainty J C. Iterative blind deconvolution method and its applications[J]. Optics Letters, 13, 547-549(1988).

    [6] Fried D L. Probability of getting a lucky short-exposure image through turbulence[J]. Journal of the Optical Society of America, 68, 1651-1657(1978).

    [7] Carasso A S. APEX blind deconvolution of color Hubble space telescope imagery and other astronomical data[J]. Optical Engineering, 45, 107004(2006).

    [8] Gao J, Anantrasirichai N, Bull D. Atmospheric turbulence removal using convolutional neural network[EB/OL]. https://arxiv.org/abs/1912.11350

    [9] Yang X S, Pan X F, Su S J et al. Data-driven awareness technology for space target image information[J]. Acta Optica Sinica, 41, 0315002(2021).

    [10] Chen G P, Gao Z S, Wang Q L et al. U-net like deep autoencoders for deblurring atmospheric turbulence[J]. Journal of Electronic Imaging, 28, 053024(2019).

    [11] Li D L, Simske S. Atmospheric turbulence degraded-image restoration by kurtosis minimization[J]. IEEE Geoscience and Remote Sensing Letters, 6, 244-247(2009).

    [12] Buslaev A, Iglovikov V I, Khvedchenya E et al. Albumentations: fast and flexible image augmentations[J]. Information, 11, 125(2020).

    [13] Lin Y L, Dai X Y, Li L et al. The new frontier of AI research: generative adversarial networks[J]. Acta Automatica Sinica, 44, 775-792(2018).

    [14] Goodfellow I J, Abadie J P, Mirza M et al. Generative adversarial nets[C], 2672-2680(2014).

    [15] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).

    [16] Xie X L, Li C X, Yang X G et al. Dynamic receptive field-based object detection in aerial imaging[J]. Acta Optica Sinica, 40, 0415001(2020).

    [17] Deng J, Dong W, Socher R et al. ImageNet: a large-scale hierarchical image database[C], 248-255(2009).

    [18] Szegedy C, Vanhoucke V, Ioffe S et al. Rethinking the inception architecture for computer vision[C], 2818-2826(2016).

    [19] Kupyn O, Budzan V, Mykhailych M et al. DeblurGAN: blind motion deblurring using conditional adversarial networks[C], 8183-8192(2018).

    [20] Mu D, Meng W, Zhao S H et al. Intelligent optical communication based on Wasserstein generative adversarial network[J]. Chinese Journal of Lasers, 47, 1106005(2020).

    [21] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. https://arxiv.org/abs/1409.1556

    [22] Paszke A, Gross S, Chintala S et al. Automatic differentiation in pytorch[C](2017).

    [23] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [24] Kingma D P, Ba J L. Adam: a method for stochastic optimization[EB/OL]. https://arxiv.org/abs/1412.6980

    [25] Anantrasirichai N, Achim A, Kingsbury N G et al. Atmospheric turbulence mitigation using complex wavelet-based fusion[J]. IEEE Transactions on Image Processing, 22, 2398-2408(2013).

    [26] Lou Y F, Kang S H, Soatto S et al. Video stabilization of atmospheric turbulence distortion[J]. Inverse Problems & Imaging, 7, 839-861(2013).

    [27] Zhang K, Zuo W M, Chen Y J et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 26, 3142-3155(2017).

    [28] Xue W F, Zhang L, Mou X Q et al. Gradient magnitude similarity deviation: a highly efficient perceptual image quality index[J]. IEEE Transactions on Image Processing, 23, 684-695(2014).

    Yiming Guo, Xiaoqing Wu, Changdong Su, Shitai Zhang, Cuicui Bi, Zhiwei Tao. Rapid Restoration of Turbulent Degraded Images Based on Bidirectional Multi-Scale Feature Fusion[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2201001
    Download Citation