• Photonics Research
  • Vol. 9, Issue 6, 1033 (2021)
Ankita Khanolkar1, Yimin Zang1, and Andy Chong1、2、*
Author Affiliations
  • 1Department of Electro-Optics and Photonics, University of Dayton, Dayton, Ohio 45469, USA
  • 2Department of Physics, University of Dayton, Dayton, Ohio 45469, USA
  • show less
    DOI: 10.1364/PRJ.419686 Cite this Article Set citation alerts
    Ankita Khanolkar, Yimin Zang, Andy Chong. Complex Swift Hohenberg equation dissipative soliton fiber laser[J]. Photonics Research, 2021, 9(6): 1033 Copy Citation Text show less
    References

    [1] H. A. Haus. Theory of mode locking with a fast saturable absorber. J. Appl. Phys., 46, 3049-3058(1975).

    [2] N. Akhmediev, A. Ankiewicz. Dissipative Solitons: From Optics to Biology and Medicine, 751(2008).

    [3] W. Firth, A. Scroggie. Optical bullet holes: robust controllable localized states of a nonlinear cavity. Phys. Rev. Lett., 76, 1623-1626(1996).

    [4] J. Lega, J. V. Moloney, A. C. Newell. Swift–Hohenberg equation for lasers. Phys. Rev. Lett., 73, 2978-2981(1994).

    [5] K. Staliūnas, G. Šlekys, C. Weiss. Nonlinear pattern formation in active optical systems: shocks, domains of tilted waves, and cross-roll patterns. Phys. Rev. Lett., 79, 2658-2661(1997).

    [6] J.-F. Mercier, J. V. Moloney. Derivation of semiconductor laser mean-field and Swift–Hohenberg equations. Phys. Rev. E, 66, 036221(2002).

    [7] E. P. Ippen. Principles of passive mode locking. Appl. Phys. B, 58, 159-170(1994).

    [8] K.-I. Maruno, A. Ankiewicz, N. Akhmediev. Exact soliton solutions of the one-dimensional complex Swift–Hohenberg equation. Phys. D, 176, 44-66(2003).

    [9] J. M. Soto-Crespo, N. Akhmediev. Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift–Hohenberg equation. Phys. Rev. E, 66, 066610(2002).

    [10] H. Wang, L. Yanti. An efficient numerical method for the quintic complex Swift-Hohenberg equation. Numer. Math. Theory Methods Appl., 4, 237-254(2011).

    [11] S. Latas. High-energy plain and composite pulses in a laser modeled by the complex Swift–Hohenberg equation. Photon. Res., 4, 49-52(2016).

    [12] H. Haus, E. Ippen, K. Tamura. Additive-pulse modelocking in fiber lasers. IEEE J. Quantum Electron., 30, 200-208(1994).

    [13] L. E. Nelson, D. Jones, K. Tamura, H. Haus, E. Ippen. Ultrashort-pulse fiber ring lasers. Appl. Phys. B, 65, 277-294(1997).

    [14] S. Latas, M. Ferreira, M. Facão. Swift–Hohenberg soliton explosions. J. Opt. Soc. Am. B, 35, 2266-2271(2018).

    [15] L. Zhao, D. Li, L. Li, X. Wang, Y. Geng, D. Shen, L. Su. Route to larger pulse energy in ultrafast fiber lasers. IEEE J. Sel. Top. Quantum Electron., 24, 8800409(2017).

    [16] C. Bao, W. Chang, C. Yang, N. Akhmediev, S. T. Cundiff. Observation of coexisting dissipative solitons in a mode-locked fiber laser. Phys. Rev. Lett., 115, 253903(2015).

    [17] Y. Zhou, W. Lin, H. Cheng, W. Wang, T. Qiao, Q. Qian, S. Xu, Z. Yang. Composite filtering effect in a SESAM mode-locked fiber laser with a 3.2-Ghz fundamental repetition rate: switchable states from single soliton to pulse bunch. Opt. Express, 26, 10842-10857(2018).

    [18] A. Khanolkar, X. Ge, A. Chong. All-normal dispersion fiber laser with a bandwidth tunable fiber-based spectral filter. Opt. Lett., 45, 4555-4558(2020).

    [19] A. Chong, W. H. Renninger, F. W. Wise. Route to the minimum pulse duration in normal-dispersion fiber lasers. Opt. Lett., 33, 2638-2640(2008).

    [20] X. Wang, Y.-G. Liu, Z. Wang, Z. Wang, G. Yang. L-band efficient dissipative soliton erbium-doped fiber laser with a pulse energy of 6.15  nJ and 3  dB bandwidth of 47.8  nm. J. Lightwave Technol., 37, 1168-1173(2019).

    [21] J. Zhou, W. Qi, W. Pan, Y. Feng. Dissipative soliton generation from a large anomalous dispersion ytterbium-doped fiber laser. Opt. Lett., 45, 5768-5771(2020).

    Ankita Khanolkar, Yimin Zang, Andy Chong. Complex Swift Hohenberg equation dissipative soliton fiber laser[J]. Photonics Research, 2021, 9(6): 1033
    Download Citation