• Chinese Journal of Lasers
  • Vol. 51, Issue 1, 0101001 (2024)
Zhengqian Luo1,2,*, Luming Song1, and Qiujun Ruan1,2
Author Affiliations
  • 1Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, Fujian , China
  • 2Shenzhen Research Institute,Xiamen University, Shenzhen 518129, Guangdong , China
  • show less
    DOI: 10.3788/CJL231233 Cite this Article Set citation alerts
    Zhengqian Luo, Luming Song, Qiujun Ruan. Progress in Research on Visible Rare‑Earth‑Doped Fiber Lasers: from Continuous Wave to Femtosecond Pulse (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0101001 Copy Citation Text show less
    Visible laser sources and their available wavelengths[12]
    Fig. 1. Visible laser sources and their available wavelengths[12]
    Energy levels of rare-earth-doped fluoride fiber[28-35]. (a) Energy levels of Pr3+-doped fluoride fiber; (b) energy levels of Dy3+-doped fluoride fiber; (c) energy levels of Tb3+-doped fluoride fiber; (d) energy levels of Ho3+-doped fluoride fiber; (e) energy levels of Tm3+-doped fluoride fiber; (f) energy levels of Pr3+/Yb3+-doped fluoride fiber
    Fig. 2. Energy levels of rare-earth-doped fluoride fiber[28-35]. (a) Energy levels of Pr3+-doped fluoride fiber; (b) energy levels of Dy3+-doped fluoride fiber; (c) energy levels of Tb3+-doped fluoride fiber; (d) energy levels of Ho3+-doped fluoride fiber; (e) energy levels of Tm3+-doped fluoride fiber; (f) energy levels of Pr3+/Yb3+-doped fluoride fiber
    Ho3+∶ZBLAN high power CW fiber lasers[50]. (a) Experimental setup; (b) tunable spectrum; (c) line width of 543.1 nm laser; (d) slope efficiency
    Fig. 3. Ho3+∶ZBLAN high power CW fiber lasers[50]. (a) Experimental setup; (b) tunable spectrum; (c) line width of 543.1 nm laser; (d) slope efficiency
    Deep red tunable CW fiber lasers[62]. (a) Experimental setup; (b) tunable spectra
    Fig. 4. Deep red tunable CW fiber lasers[62]. (a) Experimental setup; (b) tunable spectra
    High power deep red CW fiber lasers[67]. (a) Experimental setup; (b) physical picture; (c) slope efficiency; (d) spectrum
    Fig. 5. High power deep red CW fiber lasers[67]. (a) Experimental setup; (b) physical picture; (c) slope efficiency; (d) spectrum
    Red CW fiber lasers[64]. (a) Experimental setup; (b) slope efficiency; (c) spectrum
    Fig. 6. Red CW fiber lasers[64]. (a) Experimental setup; (b) slope efficiency; (c) spectrum
    All-fiber red CW fiber lasers[65]. (a) Experimental setup; (b) slope efficiency; (c) spectrum
    Fig. 7. All-fiber red CW fiber lasers[65]. (a) Experimental setup; (b) slope efficiency; (c) spectrum
    High power red CW fiber lasers[69]. (a) Experimental setup; (b) slope efficiency; (c) spectrum; (d) beam quality; (e) power stability
    Fig. 8. High power red CW fiber lasers[69]. (a) Experimental setup; (b) slope efficiency; (c) spectrum; (d) beam quality; (e) power stability
    High power yellow CW fiber lasers[74]. (a) Experimental setup; (b) physical picture ; (c) slope efficiency; (d) spectra
    Fig. 9. High power yellow CW fiber lasers[74]. (a) Experimental setup; (b) physical picture ; (c) slope efficiency; (d) spectra
    Green CW fiber lasers[71]. (a) Experimental setup; (b) slope efficiency; (c) spectrum
    Fig. 10. Green CW fiber lasers[71]. (a) Experimental setup; (b) slope efficiency; (c) spectrum
    High power green CW fiber lasers[79]. (a) Experimental setup; (b) physical picture ; (c) slope efficiency; (d) spectrum
    Fig. 11. High power green CW fiber lasers[79]. (a) Experimental setup; (b) physical picture ; (c) slope efficiency; (d) spectrum
    Graphene orange passively Q-switched fiber lasers[96]. (a) Experimental setup; (b) Q-switched pulse train; (c) slope efficiency
    Fig. 12. Graphene orange passively Q-switched fiber lasers[96]. (a) Experimental setup; (b) Q-switched pulse train; (c) slope efficiency
    Green Q-switched vortex fiber lasers[94]. (a) Experimental setup; (b) output spectrum; (c) pulse trains; (d) intensity distributions of high order modes
    Fig. 13. Green Q-switched vortex fiber lasers[94]. (a) Experimental setup; (b) output spectrum; (c) pulse trains; (d) intensity distributions of high order modes
    Visible all-fiber passively mode-locked lasers[101]. (a) Experimental setup; (b) mode-locked spectrum; (c) pulse train; (d) single pulse; (e) radio-frequency spectrum
    Fig. 14. Visible all-fiber passively mode-locked lasers[101]. (a) Experimental setup; (b) mode-locked spectrum; (c) pulse train; (d) single pulse; (e) radio-frequency spectrum
    Visible spatiotemporal mode-locked lasers[103]. (a) Experimental setup; (b) mode-locked pulse trains; (c) mode-locked spectra; (d) amplified power and pulse energy; (e) radio-frequency spectrum
    Fig. 15. Visible spatiotemporal mode-locked lasers[103]. (a) Experimental setup; (b) mode-locked pulse trains; (c) mode-locked spectra; (d) amplified power and pulse energy; (e) radio-frequency spectrum
    Yellow passively mode-locked fiber lasers[104]. (a) Pulse train with narrow span; (b) pulse train with large span; (c) evolution of single pulse envelope with pump power; (d) autocorrelation trace; (e) experimental setup
    Fig. 16. Yellow passively mode-locked fiber lasers[104]. (a) Pulse train with narrow span; (b) pulse train with large span; (c) evolution of single pulse envelope with pump power; (d) autocorrelation trace; (e) experimental setup
    External cavity compressed visible femtosecond fiber lasers[28]. (a) Experimental setup; (b) mode-locked spectrum; (c) mode-locked autocorrelation trace
    Fig. 17. External cavity compressed visible femtosecond fiber lasers[28]. (a) Experimental setup; (b) mode-locked spectrum; (c) mode-locked autocorrelation trace
    Gain fiberPump type

    Pump wavelength /

    nm

    Output wavelength /

    nm

    Output

    power /mW

    Slope efficiency /

    %

    Year
    Pr/Yb∶ZBLANTi∶sapphire840-8506352010199137
    Ti∶sapphire86063530052199542
    Ti∶sapphire850635102019199743
    Ti∶sapphire85049116512.1199944
    LD850635206045200245
    52032017
    Pr∶ZBLANTi∶sapphire835,1010635~180-199146
    605~30-
    520~1-
    LD830,1020492~1~1199647
    Ho∶ZBLANKr+647.15501020199048
    LD643~5493824199649
    Solid-state laser640543.198034.2202150
    Er∶ZBLANTi∶sapphire8015462311199151
    Ti∶sapphire9705445015199252
    HeNe6334700.043200253
    Tm∶ZBLANKr+676,647455,4800.4~0.2199054
    LD113048210630199555
    Nd∶YAG112348123018.5199756
    Fiber laser112078450.7200557
    Nd∶ZBLAN-~5904120.51.5199558
    Table 1. Representative research achievements of up-conversion visible CW fiber lasers
    Gain fiberPump typePump wavelength /nmOutput wavelength /nmOutput power /mWSlope efficiency /%Year
    Pr∶ZBLANAr+476.57152530199160
    63525064
    60515033
    52021.03
    49169
    Optically pumped semiconductor laser497.76359441.5200561
    GaN4487164930200962
    6355935
    5214331
    4884229
    GaN442,44852132253201163
    GaN(quasi-continuous wave)443634.5107020.7202064
    GaN444635.5230014202165
    GaN443521360020.9202266
    GaN443717410022.2202367
    GaN443491.597.523.7202368
    GaN443635.2492025.7202369
    Pr∶AlF3GaN442638645.741.9201170
    GaN444522.259843201171
    GaN442638200036.1201972
    Dy∶ZBLANAr+457575~101.5200073
    4782.30.9
    GaN450574.6112033.6202174
    Dy∶AlF3GaN398.857510.317.1201075
    Tb∶ZBLANAr+488542.81.68.4200876
    Ho∶ZBLANSSL532752.1164050.2202277
    Table 2. Representative research achievements of down-conversion visible CW fiber lasers
    NanomaterialGain fiberOutput wavelength /nm

    Pulse

    energy /nJ

    Frequency /

    kHz

    Pulse

    width /μs

    Year

    Transition metal dichalcogenides

    (TMDs)

    Pr∶ZBLAN604

    6.4(WS2

    5.5(MoS2

    67.3-132.2

    50.8-118.4

    0.43-1.10

    0.60-1.95

    201697
    Pr∶ZBLAN635

    28.7(WS2

    16.2(MoS2

    11.1(MoSe2

    232.7-512.8

    240.4-438.6

    357.1-555.1

    0.2

    0.22

    0.24

    201690
    Pr∶ZBLAN6350.4390.9-203.20.80-1.47201791
    Topological insulators(TIs)Pr∶ZBLAN63514.3164.5-454.50.24-0.86201588
    Pr∶ZBLAN6043.186.2-187.40.49-0.73201798
    Black phosphorus(BP)Pr∶ZBLAN63527.6108.8-409.80.38-1.56201789
    GraphenePr∶ZBLAN6033830.47201496
    Pr∶ZBLAN63524.264.1-195.30.55-1.04201686
    Pr∶AlF36362806330.18201887

    Single-walled carbon nanotubes

    (SWNTs)

    Pr∶ZBLAN71618.332.6-86.52.3-7.8201785
    Pr∶ZBLAN6352.9557.5-98.20.81-1.92201892
    Au nanoparticlesPr∶ZBLAN63527.7285.7-546.40.23-0.55201593
    Cu nanowiresPr∶ZBLAN63530.7239.8-312.40.39-0.68201694
    Au nanowiresEr∶ZBLAN54325.242.6-181.20.49-1.99201995
    Pr∶ZBLAN6351.87299.3-407.30.62-1.01201995
    Table 3. Representative research achievements of visible passively Q-switched fiber lasers
    Mode locked typeGain fiberOutput wavelength /nmOutput power /mWFrequency /MHzPulse width /psYear
    NALMPr/Yb∶ZBLAN6351.353.87962019101
    NOLMPr/Yb∶ZBLAN6341.35.12852020102
    NPRPr/Yb∶ZBLAN635440110.5692021103
    Dy∶ZBLAN575240100.87832022104
    Ho∶ZBLAN545288294.8619.72022105
    Pr∶ZBLAN635901370.168(compressed)202328
    Table 4. Representative research achievements of visible passively mode-locked fiber lasers
    Zhengqian Luo, Luming Song, Qiujun Ruan. Progress in Research on Visible Rare‑Earth‑Doped Fiber Lasers: from Continuous Wave to Femtosecond Pulse (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0101001
    Download Citation