• Advanced Photonics
  • Vol. 3, Issue 2, 026004 (2021)
Herve Hugonnet1、2, Yeon Wook Kim3, Moosung Lee1、2, Seungwoo Shin1、2, Ralph H. Hruban4, Seung-Mo Hong4、5、*, and YongKeun Park1、2、6、*
Author Affiliations
  • 1Korea Advanced Institute of Science and Technology, Department of Physics, Daejeon, Republic of Korea
  • 2KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
  • 3Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
  • 4Johns Hopkins Medical Institutions, Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Baltimore, Maryland, United States
  • 5University of Ulsan College of Medicine, Asan Medical Center, Department of Pathology, Seoul, Republic of Korea
  • 6Tomocube Inc., Daejeon, Republic of Korea
  • show less
    DOI: 10.1117/1.AP.3.2.026004 Cite this Article Set citation alerts
    Herve Hugonnet, Yeon Wook Kim, Moosung Lee, Seungwoo Shin, Ralph H. Hruban, Seung-Mo Hong, YongKeun Park. Multiscale label-free volumetric holographic histopathology of thick-tissue slides with subcellular resolution[J]. Advanced Photonics, 2021, 3(2): 026004 Copy Citation Text show less
    References

    [1] H. Suchannek. Beiträge zur feinern normalen Anatomie des menschlichen Geruchsorganes. Arch. mikroskopische Anat., 36, 375-403(1890).

    [2] A. H. Coons, H. J. Creech, R. N. Jones. Immunological properties of an antibody containing a fluorescent group. Proc. Soc. Exp. Biol. Med., 47, 200-202(1941).

    [3] M. Titford. The long history of hematoxylin. Biotech. Histochem., 80, 73-78(2005).

    [4] J. I. Hamburger et al. Increasing the accuracy of fine-needle biopsy for thyroid nodules. Arch. Pathol. Lab. Med., 113, 1035-1041(1989).

    [5] R. J. Buesa. Histology: a unique area of the medical laboratory. Ann. Diagn. Pathol., 11, 137-141(2007).

    [6] M. Wang et al. Gigapixel surface imaging of radical prostatectomy specimens for comprehensive detection of cancer-positive surgical margins using structured illumination microscopy. Sci. Rep., 6, 27419(2016).

    [7] A. K. Glaser et al. Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens. Nat. Biomed. Eng., 1, 0084(2017).

    [8] H. Tu et al. Stain-free histopathology by programmable supercontinuum pulses. Nat. Photonics, 10, 534-540(2016).

    [9] C. W. Freudiger et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science, 322, 1857-1861(2008).

    [10] A. Zumbusch, G. R. Holtom, X. S. Xie. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett., 82, 4142-4145(1999).

    [11] D. Débarre et al. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Methods, 3, 47-53(2006).

    [12] J. A. Squier et al. Third harmonic generation microscopy. Opt. Express, 3, 315-324(1998).

    [13] D. Yelin, Y. Silberberg. Laser scanning third-harmonic-generation microscopy in biology. Opt. Express, 5, 169-175(1999).

    [14] W. R. Zipfel et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl. Acad. Sci. U. S. A., 100, 7075-7080(2003).

    [15] O. Assayag et al. Large field, high resolution full-field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment. Technol. Cancer Res. Treat., 13, 455-468(2014).

    [16] Y. Park, C. Depeursinge, G. Popescu. Quantitative phase imaging in biomedicine. Nat. Photonics, 12, 578-589(2018).

    [17] Z. Wang et al. Tissue refractive index as marker of disease. J. Biomed. Opt., 16, 116017(2011).

    [18] M. Lee et al. Label-free optical quantification of structural alterations in Alzheimer’s disease. Sci. Rep., 6, 31034(2016).

    [19] E. Wolf. Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Commun., 1, 153-156(1969).

    [20] K. Kim et al. Optical diffraction tomography techniques for the study of cell pathophysiology. J. Biomed. Photonics Eng., 2, 020201(2016).

    [21] Y. Kim et al. Profiling individual human red blood cells using common-path diffraction optical tomography. Sci. Rep., 4, 6659(2014).

    [22] Y. Park et al. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc. Natl. Acad. Sci. U.S.A., 105, 13730-13735(2008).

    [23] S.-A. Yang et al. Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease. Cytom. Part A, 91, 510-518(2017).

    [24] G. Dardikman-Yoffe et al. High-resolution 4-D acquisition of freely swimming human sperm cells without staining. Sci. Adv., 6, eaay7619(2020).

    [25] F. Merola et al. Tomographic flow cytometry by digital holography. Light Sci. Appl., 6, e16241(2017).

    [26] K. Lee et al. Time-multiplexed structured illumination using a DMD for optical diffraction tomography. Opt. Lett., 42, 999-1002(2017).

    [27] M. Takeda, H. Ina, S. Kobayashi. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am., 72, 156-160(1982).

    [28] E. Wolf, M. Born. Scattering from inhomogeneous media. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 695-734(1999).

    [29] C. Park, S. Shin, Y. Park. Generalized quantification of three-dimensional resolution in optical diffraction tomography using the projection of maximal spatial bandwidths. J. Opt. Soc. Am. A, 35, 1891-1898(2018).

    [30] J. Lim et al. High-fidelity optical diffraction tomography of multiple scattering samples. Light Sci. Appl., 8, 82(2019).

    [31] U. S. Kamilov et al. Learning approach to optical tomography. Optica, 2, 517-522(2015).

    [32] S. Fan et al. Optical fiber refractive index profiling by iterative optical diffraction tomography. J. Lightwave Technol., 36, 5754-5763(2018).

    [33] A. Goy et al. Imaging thick samples with optical tomography(2017).

    [34] J. Kostencka et al. Holographic tomography with scanning of illumination: space-domain reconstruction for spatially invariant accuracy. Biomed. Opt. Express, 7, 4086-4101(2016).

    [35] S. L. Jacques. Optical properties of biological tissues: a review. Phys. Med. Biol., 58, R37-R61(2013).

    [36] T. H. Nguyen et al. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat. Commun., 8, 210(2017).

    [37] J. Lim et al. Beyond Born––Rytov limit for super-resolution optical diffraction tomography. Opt. Express, 25, 30445-30458(2017).

    [38] D. Ryu et al. DeepRegularizer: rapid resolution enhancement of tomographic imaging using deep learning(2020).

    [39] H. Foroosh, J. B. Zerubia, M. Berthod. Extension of phase correlation to subpixel registration. IEEE Trans. Image Process., 11, 188-200(2002).

    [40] S. Preibisch, S. Saalfeld, P. Tomancak. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics, 25, 1463-1465(2009).

    [41] P. Ferraro et al. Extended focused image in microscopy by digital holography. Opt. Express, 13, 6738-6749(2005).

    [42] Y. Zhang et al. Edge sparsity criterion for robust holographic autofocusing. Opt. Lett., 42, 3824-3827(2017).

    [43] L. Che et al. Exploiting a holographic polarization microscope for rapid autofocusing and 3D tracking. Biomed. Opt. Express, 11, 7150-7164(2020).

    [44] D. C. Ghiglia, M. D. Pritt. Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software(1998).

    Herve Hugonnet, Yeon Wook Kim, Moosung Lee, Seungwoo Shin, Ralph H. Hruban, Seung-Mo Hong, YongKeun Park. Multiscale label-free volumetric holographic histopathology of thick-tissue slides with subcellular resolution[J]. Advanced Photonics, 2021, 3(2): 026004
    Download Citation