• Advanced Photonics
  • Vol. 3, Issue 2, 026004 (2021)
Herve Hugonnet1、2, Yeon Wook Kim3, Moosung Lee1、2, Seungwoo Shin1、2, Ralph H. Hruban4, Seung-Mo Hong4、5、*, and YongKeun Park1、2、6、*
Author Affiliations
  • 1Korea Advanced Institute of Science and Technology, Department of Physics, Daejeon, Republic of Korea
  • 2KAIST Institute for Health Science and Technology, KAIST, Daejeon, Republic of Korea
  • 3Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
  • 4Johns Hopkins Medical Institutions, Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Baltimore, Maryland, United States
  • 5University of Ulsan College of Medicine, Asan Medical Center, Department of Pathology, Seoul, Republic of Korea
  • 6Tomocube Inc., Daejeon, Republic of Korea
  • show less
    DOI: 10.1117/1.AP.3.2.026004 Cite this Article Set citation alerts
    Herve Hugonnet, Yeon Wook Kim, Moosung Lee, Seungwoo Shin, Ralph H. Hruban, Seung-Mo Hong, YongKeun Park. Multiscale label-free volumetric holographic histopathology of thick-tissue slides with subcellular resolution[J]. Advanced Photonics, 2021, 3(2): 026004 Copy Citation Text show less

    Abstract

    Histopathology relies upon the staining and sectioning of biological tissues, which can be laborious and may cause artifacts and distort tissues. We develop label-free volumetric imaging of thick-tissue slides, exploiting refractive index distributions as intrinsic imaging contrast. The present method systematically exploits label-free quantitative phase imaging techniques, volumetric reconstruction of intrinsic refractive index distributions in tissues, and numerical algorithms for the seamless stitching of multiple three-dimensional tomograms and for reducing scattering-induced image distortion. We demonstrated label-free volumetric imaging of thick tissues with the field of view of 2 mm × 1.75 mm × 0.2 mm with a spatial resolution of 170 nm × 170 nm × 1400 nm. The number of optical modes, calculated as the reconstructed volume divided by the size of the point spread function, was ~20 giga voxels. We have also demonstrated that different tumor types and a variety of precursor lesions and pathologies can be visualized with the present method.
    Herve Hugonnet, Yeon Wook Kim, Moosung Lee, Seungwoo Shin, Ralph H. Hruban, Seung-Mo Hong, YongKeun Park. Multiscale label-free volumetric holographic histopathology of thick-tissue slides with subcellular resolution[J]. Advanced Photonics, 2021, 3(2): 026004
    Download Citation