• Chinese Optics Letters
  • Vol. 19, Issue 4, 041403 (2021)
Yihuai Zhu1, Zhijian Zheng1、2, Xiaogang Ge1, Geguo Du3, Shuangchen Ruan1、2, Chunyu Guo1、*, Peiguang Yan1, Ping Hua1, Linzhong Xia4, and Qitao Lü5
Author Affiliations
  • 1Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 2College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
  • 3College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
  • 4Shenzhen Institute of Information Technology, Shenzhen 518172, China
  • 5Han’s Laser Technology Industry Group Co., Ltd., Shenzhen 518057, China
  • show less
    DOI: 10.3788/COL202119.041403 Cite this Article Set citation alerts
    Yihuai Zhu, Zhijian Zheng, Xiaogang Ge, Geguo Du, Shuangchen Ruan, Chunyu Guo, Peiguang Yan, Ping Hua, Linzhong Xia, Qitao Lü. High-power, ultra-broadband supercontinuum source based upon 1/1.5 µm dual-band pumping[J]. Chinese Optics Letters, 2021, 19(4): 041403 Copy Citation Text show less
    References

    [1] V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, G. Kalinchenko, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard. Field trial of active remote sensing using a high-power short-wave infrared supercontinuum laser. Appl. Opt., 52, 6813(2013).

    [2] C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, O. Bang. Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. Opt. Lett., 43, 999(2018).

    [3] N. Nishizawa, H. Kawagoe, M. Yamanaka, M. Matsushima, K. Mori, T. Kawabe. Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging. IEEE J. Sel. Top. Quantum Electron., 25, 7101115(2018).

    [4] N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, O. Bang. Real-time high-resolution mid-infrared optical coherence tomography. Light Sci. Appl., 8, 11(2019).

    [5] H. T. Bekman, J. Van Den Heuvel, F. Van Putten, R. Schleijpen. Development of a mid-infrared laser for study of infrared countermeasures techniques. Proc. SPIE, 5615, 27(2004).

    [6] S. Chen, W. Hu, Y. Xu, Y. Cai, Z. Wang, Z. Zhang. Mode-locked pulse generation from an all-FMF ring laser cavity. Chin. Opt. Lett., 17, 121405(2019).

    [7] K. Yao Lau, P. Jern Ker, A. F. Abas, M. T. Alresheedi, M. A. Mahdi. Mode-locked fiber laser in the C-band region for dual-wavelength ultrashort pulses emission using a carbon nanotube saturable absorber. Chin. Opt. Lett., 17, 051401(2019).

    [8] K. K. Chen, S. U. Alam, J. H. V. Price, J. R. Hayes, D. Lin. Picosecond fiber MOPA pumped supercontinuum source with 39 W output power. Opt. Express, 18, 5426(2010).

    [9] X. Hu, W. Zhang, Z. Yang, Y. Wang, D. Shen. High average power, strictly all-fiber supercontinuum source with good beam quality. Opt. Lett., 36, 2659(2011).

    [10] S. Gao, Y. Wang, R. Sun, H. Li, C. Tian, D. Jin, P. Wang. Ultraviolet-enhanced supercontinuum generation in uniform photonic crystal fiber pumped by a giant-chirped fiber laser. Opt. Express, 22, 24697(2014).

    [11] W. Nan, J. H. Cai, Q. Xue, S. P. Chen, L. J. Yang, H. Jing. Ultraviolet-enhanced supercontinuum generation with a mode-locked Yb-doped fiber laser operating in dissipative-soliton-resonance region. Opt. Express, 26, 1689(2018).

    [12] X. Zou, J. Qiu, X. Wang, Z. Ye, C. Sun, T. Ge, J. Wu. An all-fiber supercontinuum source with 30.6-W high-power and ultrawide spectrum ranging from 385 nm to beyond 2400 nm. IEEE Photon. J., 9, 1502107(2017).

    [13] X. Qi, S. Chen, Z. Li, T. Liu, J. Hou. High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm. Opt. Lett., 43, 1019(2018).

    [14] H. Chen, Z. Chen, S. Chen, J. Hou, Q. Lu. Hundred-watt-level, all-fiber-integrated supercontinuum generation from photonic crystal fiber. Appl. Phys. Express, 6, 032702(2013).

    [15] J. Nicholson, A. D. Yablon, P. S. Westbrook, K. S. Feder, M. F. Yan. High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation. Opt. Express, 12, 3025(2004).

    [16] C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, J. Terry, F. L. M. J. Freeman, D. A. Nolan, W. A. Wood. Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses. IEEE J. Sel. Top. Quantum Electron., 13, 789(2007).

    [17] C. Xia, X. Zhao, M. N. Islam, F. L. Terry, J. Mauricio. 10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 m with direct pulse pattern modulation. IEEE J. Sel. Top. Quantum Electron., 15, 422(2009).

    [18] K. Yin, B. Zhang, J. Yao, L. Yang, S. Chen, J. Hou. Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers. Opt. Lett., 41, 946(2016).

    [19] Z. Zheng, D. Ouyang, J. Zhao, M. Liu, S. Ruan, P. Yan, J. Wang. Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and ZBLAN fiber. Photon. Res., 4, 135(2016).

    [20] Y. Ke, B. Zhang, L. Yang, H. Jing. 15.2 W spectrally flat all-fiber supercontinuum laser source with >1 W power beyond 3.8 µm. Opt. Lett., 42, 2334(2017).

    [21] T. Wu, L. Yang, Z. Dou, K. Yin, X. He, B. Zhang, J. Hou. Ultra-efficient, 10-watt-level mid-infrared supercontinuum generation in fluoroindate fiber. Opt. Lett., 44, 2378(2019).

    [22] D. Jain, R. Sidharthan, P. M. Moselund, S. Yoo, D. Ho, O. Bang. Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber. Opt. Express, 24, 26667(2016).

    [23] D. Jain, R. Sidharthan, G. Woyessa, P. M. Moselund, P. Bowen, S. Yoo, O. Bang. Scaling power, bandwidth, and efficiency of mid-infrared supercontinuum source based on a GeO2-doped silica fiber. J. Opt. Soc. Am. B, 36, A86(2019).

    [24] Z. Zheng, D. Ouyang, J. Wang, C. Guo, J. Pei, S. Ruan. Supercontinuum generation by using a highly germania-doped fiber with a high-power proportion beyond 2400 nm. IEEE Photon. J., 11, 3200508(2019).

    [25] H. Chen, X. Jiang, S. Xu, H. Zhang. Recent progress in multi-wavelength fiber lasers: principles, status, and challenges. Chin. Opt. Lett., 18, 041405(2020).

    [26] X. Ge, J. Yu, W. Liu, S. Ruan, C. Guo, Y. Chen, P. Yan, P. Hua. High-power all-fiber 1.0/1.5 µm dual-band pulsed MOPA source. Chin. Opt. Lett., 16, 020010(2018).

    [27] C. Guo, S. Ruan, P. Yan, E. Pan, H. Wei. Flat supercontinuum generation in cascaded fibers pumped by a continuous wave laser. Opt. Express, 18, 11046(2010).

    CLP Journals

    [1] Song Zhang, Man Jiang, Can Li, Rongtao Su, Pu Zhou, Zongfu Jiang. High-power broadband supercontinuum generation through a simple narrow-bandwidth FBGs-based fiber laser cavity[J]. Chinese Optics Letters, 2022, 20(1): 011405

    Data from CrossRef

    [1] Chunlei Huang, Fangxia Kou, Kedi Peng, Tianzhi Tu, Shuang Li, Minting Guo, Genjian Yu, Yingwu Zhou, Wanjun Bi, Shupei Zheng, Cheng Zhang, Biao Zheng, Jun Wang. Engineering the High-Frequency Components of Coherent Supercontinuum Generation in Hybrid Optical Fibers with Yttrium Aluminum Garnet Core. Results in Physics, 105233(2022).

    Yihuai Zhu, Zhijian Zheng, Xiaogang Ge, Geguo Du, Shuangchen Ruan, Chunyu Guo, Peiguang Yan, Ping Hua, Linzhong Xia, Qitao Lü. High-power, ultra-broadband supercontinuum source based upon 1/1.5 µm dual-band pumping[J]. Chinese Optics Letters, 2021, 19(4): 041403
    Download Citation