• Chinese Optics Letters
  • Vol. 19, Issue 9, 091404 (2021)
Xun Li1、3, Ming Li1、**, and Hongjun Liu1、2、*
Author Affiliations
  • 1State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi’an 710119, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Schematic of the fs laser processing system assisted with airflow pressure.
    Fig. 1. Schematic of the fs laser processing system assisted with airflow pressure.
    Three-dimensional morphology of the samples fabricated by the fs laser at different scanning speeds: (a) 20 mm/s, (b) 30 mm/s, (c) 40 mm/s, and (d) 60 mm/s.
    Fig. 2. Three-dimensional morphology of the samples fabricated by the fs laser at different scanning speeds: (a) 20 mm/s, (b) 30 mm/s, (c) 40 mm/s, and (d) 60 mm/s.
    Laser power dependence of three-dimensional micro/nanostructures’ morphology: (a) 2.5 W, (b) 5 W, (c) 10 W, (d) 15 W, and (e) 20 W.
    Fig. 3. Laser power dependence of three-dimensional micro/nanostructures’ morphology: (a) 2.5 W, (b) 5 W, (c) 10 W, (d) 15 W, and (e) 20 W.
    Reflection spectra of the samples with hybrid micro/nanostructures induced by the fs laser at different laser power and scanning speed.
    Fig. 4. Reflection spectra of the samples with hybrid micro/nanostructures induced by the fs laser at different laser power and scanning speed.
    Three-dimensional micro/nanostructures’ morphology of samples fabricated by the fs laser assisted with different airflow pressures: (a) 0 MPa, (b) 0.05 MPa, (c) 0.1 MPa, and (d) 0.15 MPa.
    Fig. 5. Three-dimensional micro/nanostructures’ morphology of samples fabricated by the fs laser assisted with different airflow pressures: (a) 0 MPa, (b) 0.05 MPa, (c) 0.1 MPa, and (d) 0.15 MPa.
    Changing mechanism of the micro/nanostructures' morphology by airflow pressure.
    Fig. 6. Changing mechanism of the micro/nanostructures' morphology by airflow pressure.
    Reflection spectra of the samples fabricated by the fs laser under different airflow pressures.
    Fig. 7. Reflection spectra of the samples fabricated by the fs laser under different airflow pressures.
    XRD patterns of sample surfaces with different airflow pressures at 20 W and 50 mm/s.
    Fig. 8. XRD patterns of sample surfaces with different airflow pressures at 20 W and 50 mm/s.
    Blackening samples of Ti alloy before and after HLTTs.
    Fig. 9. Blackening samples of Ti alloy before and after HLTTs.
    ParameterReflectivity/%
    0 MPa0.05 MPa0.1 MPa0.15 MPa
    BeforeAfterBeforeAfterBeforeAfterBeforeAfter
    2.5 W, 50 mm/s4.965.104.474.674.584.774.815.01
    5.0 W, 50 mm/s4.394.553.884.013.914.064.194.32
    10 W, 50 mm/s4.154.253.954.063.863.993.924.05
    15 W, 50 mm/s3.583.813.223.453.173.213.243.38
    20 W, 50 mm/s2.832.972.452.592.312.432.592.71
    20 W, 20 mm/s3.123.283.053.152.462.612.852.99
    20 W, 30 mm/s4.234.453.793.973.533.773.693.81
    20 W, 40 mm/s4.094.293.824.093.493.713.753.94
    20 W, 60 mm/s3.873.943.153.253.313.413.593.72
    Table 1. Average Reflectivity of Samples Fabricated Under Different Laser Parameters Assisted with Airflow Before and After High and Low Temperature Tests
    Copy Citation Text
    Xun Li, Ming Li, Hongjun Liu. Enhanced optical absorption surface of titanium fabricated by a femtosecond laser assisted with airflow pressure[J]. Chinese Optics Letters, 2021, 19(9): 091404
    Download Citation
    Category: Lasers, Optical Amplifiers, and Laser Optics
    Received: Jan. 1, 2021
    Accepted: Mar. 4, 2021
    Published Online: Jun. 15, 2021
    The Author Email: Ming Li (liming@opt.ac.cn), Hongjun Liu (liuhongjun@opt.ac.cn)