• Laser & Optoelectronics Progress
  • Vol. 59, Issue 1, 0100005 (2022)
Long Ma1、*, Manjun Yan2, Changyuan Guo1, and Hongjin Fan1
Author Affiliations
  • 1Key Laboratory of Intelligent Information Processing and Control of Chongqing Municipal Institutions of Higher Education, College of Computer Science and Engineering, Chongqing Three Gorges University, Chongqing 404120, China
  • 2School of Mechanical Engineering, Chongqing Three Gorges University, Chongqing 404120, China
  • show less
    DOI: 10.3788/LOP202259.0100005 Cite this Article Set citation alerts
    Long Ma, Manjun Yan, Changyuan Guo, Hongjin Fan. Experimental Research Progress in Squeezed Light of Continuous Variable Higher-Order Mode[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0100005 Copy Citation Text show less
    References

    [1] Slusher R E, Hollberg L W, Yurke B et al. Observation of squeezed states generated by four-wave mixing in an optical cavity[J]. Physical Review Letters, 55, 2409-2412(1985).

    [2] Wu L A, Kimble H J, Hall J L et al. Generation of squeezed states by parametric down conversion[J]. Physical Review Letters, 57, 2520-2523(1986).

    [3] Vahlbruch H, Mehmet M, Danzmann K et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 117, 110801(2016).

    [4] Treps N, Grosse N, Bowen W P et al. A quantum laser pointer[J]. Science, 301, 940-943(2003).

    [5] Sun H X, Liu K, Liu Z L et al. Small-displacement measurements using high-order Hermite-Gauss modes[J]. Applied Physics Letters, 104, 121908(2014).

    [6] Lavery M P J, Speirits F C, Barnett S M et al. Detection of a spinning object using lights orbital angular momentum[J]. Science, 341, 537-540(2013).

    [7] Liu K, Cai C X, Li J et al. Squeezing-enhanced rotating-angle measurement beyond the quantum limit[J]. Applied Physics Letters, 113, 261103(2018).

    [8] Korech O, Steinitz U, Gordon R J et al. Observing molecular spinning via the rotational Doppler effect[J]. Nature Photonics, 7, 711-714(2013).

    [9] Lipfert J, van Oene M M, Lee M et al. Torque spectroscopy for the study of rotary motion in biological systems[J]. Chemical Reviews, 115, 1449-1474(2015).

    [10] Bercegol H, Lehoucq R. Vacuum friction on a rotating pair of atoms[J]. Physical Review Letters, 115, 090402(2015).

    [11] Tamburini F, Thidé B, Molina-Terriza G et al. Twisting of light around rotating black holes[J]. Nature Physics, 7, 195-197(2011).

    [12] Steinlechner S, Rohweder N O, Korobko M et al. Mitigating mode-matching loss in nonclassical laser interferometry[J]. Physical Review Letters, 121, 263602(2018).

    [13] Granata M, Buy C, Ward R et al. Higher-order Laguerre-Gauss mode generation and interferometry for gravitational wave detectors[J]. Physical Review Letters, 105, 231102(2010).

    [14] Lassen M, Delaubert V, Harb C C et al. Generation of squeezing in higher order Hermite-Gaussian modes with an optical parametric amplifier[J]. Journal of the European Optical Society: Rapid Publications, 1, 06003(2006).

    [15] Lassen M, Leuchs G, Andersen U L. Continuous variable entanglement and squeezing of orbital angular momentum states[J]. Physical Review Letters, 102, 163602(2009).

    [16] Liu K, Guo J, Cai C X et al. Experimental generation of continuous-variable hyperentanglement in an optical parametric oscillator[J]. Physical Review Letters, 113, 170501(2014).

    [17] Guo J, Cai C X, Ma L et al. Higher order mode entanglement in a type II optical parametric oscillator[J]. Optics Express, 25, 4985-4993(2017).

    [18] Cai C X, Ma L, Li J et al. Generation of a continuous-variable quadripartite cluster state multiplexed in the spatial domain[J]. Photonics Research, 6, 479-484(2018).

    [19] Chalopin B, Scazza F, Fabre C et al. Direct generation of a multi-transverse mode non-classical state of light[J]. Optics Express, 19, 4405-4410(2011).

    [20] Navarrete-Benlloch C, de Valcárcel G J, Roldán E. Generating highly squeezed hybrid Laguerre-Gauss modes in large-Fresnel-number degenerate optical parametric oscillators[J]. Physical Review A, 79, 043820(2009).

    [21] Chalopin B, Scazza F, Fabre C et al. Multimode nonclassical light generation through the optical-parametric-oscillator threshold[J]. Physical Review A, 81, 061804(2010).

    [22] Liu K, Guo J, Cai C X et al. Direct generation of spatial quadripartite continuous variable entanglement in an optical parametric oscillator[J]. Optics Letters, 41, 5178-5181(2016).

    [23] Rodrigues R B, Gonzales J, da Silva B P et al. Orbital angular momentum symmetry in a driven optical parametric oscillator[J]. Optics Letters, 43, 2486-2489(2018).

    [24] Sharma V, Kumar S C, Samanta G K et al. Orbital angular momentum exchange in a picosecond optical parametric oscillator[J]. Optics Letters, 43, 3606-3609(2018).

    [25] Cai C X, Ma L, Li J et al. Experimental characterization of continuous-variable orbital angular momentum entanglement using Stokes-operator basis[J]. Optics Express, 26, 5724-5732(2018).

    [26] Sharma V, Aadhi A, Samanta G K. Controlled generation of vortex and vortex dipole from a Gaussian pumped optical parametric oscillator[J]. Optics Express, 27, 18123-18130(2019).

    [27] Morizur J F, Armstrong S, Treps N et al. Spatial reshaping of a squeezed state of light[J]. The European Physical Journal D, 61, 237-239(2011).

    [28] Arrizón V. Complex modulation with a twisted-nematic liquid-crystal spatial light modulator: double-pixel approach[J]. Optics Letters, 28, 1359-1361(2003).

    [29] Arrizón V, Ruiz U, Carrada R et al. Pixelated phase computer holograms for the accurate encoding of scalar complex fields[J]. Journal of the Optical Society of America A, 24, 3500-3507(2007).

    [30] Jesacher A, Maurer C, Schwaighofer A et al. Near-perfect hologram reconstruction with a spatial light modulator[J]. Optics Express, 16, 2597-2603(2008).

    [31] Zhu L, Wang J. Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators[J]. Scientific Report, 4, 7441(2014).

    [32] Bowman D, Harte T L, Chardonnet V et al. High-fidelity phase and amplitude control of phase-only computer generated holograms using conjugate gradient minimisation[J]. Optics Express, 25, 11692-11700(2017).

    [33] Fuentes J L M, Moreno I. Random technique to encode complex valued holograms with on axis reconstruction onto phase-only displays[J]. Optics Express, 26, 5875-5893(2018).

    [34] Liu S Y, Zhang J Y. Principles and applications of ultrafast laser processing based on spatial light modulators[J]. Laser & Optoelectronics Progress, 57, 111431(2020).

    [35] Liu Q, Pan J, Wan Z S et al. Generation methods for complex vortex structured light field[J]. Chinese Journal of Lasers, 47, 0500006(2020).

    [36] Liu K, Li Z, Guo H et al. Generation of high-order Hermite-Gaussian beams using a spatial light modulator[J]. Chinese Journal of Lasers, 47, 0905004(2020).

    [37] Semmler M, Berg-Johansen S, Chille V et al. Single-mode squeezing in arbitrary spatial modes[J]. Optics Express, 24, 7633-7642(2016).

    [38] Sephton B, Dudley A, Forbes A. Revealing the radial modes in vortex beams[J]. Applied Optics, 55, 7830-7835(2016).

    [39] Ma L, Guo H, Sun H X et al. Generation of squeezed states of light in arbitrary complex amplitude transverse distribution[J]. Photonics Research, 8, 1422-1427(2020).

    [40] Persson M, Engström D, Goksör M. Reducing the effect of pixel crosstalk in phase only spatial light modulators[J]. Optics Express, 20, 22334-22343(2012).

    [41] Chille V, Berg-Johansen S, Semmler M et al. Experimental generation of amplitude squeezed vector beams[J]. Optics Express, 24, 12385-12394(2016).

    Long Ma, Manjun Yan, Changyuan Guo, Hongjin Fan. Experimental Research Progress in Squeezed Light of Continuous Variable Higher-Order Mode[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0100005
    Download Citation