• Advanced Photonics
  • Vol. 3, Issue 4, 044002 (2021)
Yan Jin1, Lin Zhou1、2、*, Jie Liang1, and Jia Zhu1、*
Author Affiliations
  • 1Nanjing University, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing, China
  • 2Nanjing University, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing, China
  • show less
    DOI: 10.1117/1.AP.3.4.044002 Cite this Article Set citation alerts
    Yan Jin, Lin Zhou, Jie Liang, Jia Zhu. Electrochemically driven dynamic plasmonics[J]. Advanced Photonics, 2021, 3(4): 044002 Copy Citation Text show less
    References

    [1] S. A. Maier. Plasmonics: Fundamentals and Applications(2007).

    [2] J. A. Schuller et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater., 9, 193-204(2010).

    [3] E. Ozbay. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 311, 189-193(2006).

    [4] D. K. Gramotnev, S. I. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat. Photonics, 4, 83-91(2010).

    [5] R. M. Ma, R. F. Oulton. Applications of nanolasers. Nat. Nanotechnol., 14, 12-22(2019).

    [6] S. Lal, S. Link, N. J. Halas. Nano-optics from sensing to waveguiding. Nat. Photonics, 1, 641-648(2007).

    [7] H. A. Atwater, A. Polman. Plasmonics for improved photovoltaic devices. Nat. Mater., 9, 205-213(2010).

    [8] Y. Fang, M. Sun. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light: Sci. Appl., 4, e294(2015).

    [9] J. Valentine et al. Three-dimensional optical metamaterial with a negative refractive index. Nature, 455, 376-379(2008).

    [10] Z. Liu et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 315, 1686(2007).

    [11] J. Liang et al. Plasmon-enhanced solar vapor generation. Nanophotonics, 8, 771-786(2019).

    [12] C. Chen et al. Dual functional asymmetric plasmonic structures for solar water purification and pollution detection. Nano Energy, 51, 451-456(2018).

    [13] L. Zhou et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv., 2, e1501227(2016).

    [14] L. Zhou et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics, 10, 393-398(2016).

    [15] O. Neumann et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc. Natl. Acad. Sci. U. S. A., 110, 11677-11681(2013).

    [16] M. L. Brongersma, N. J. Halas, P. Nordlander. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol., 10, 25-34(2015).

    [17] R. Stanley. Plasmonics in the mid-infrared. Nat. Photonics, 6, 409-411(2012).

    [18] R. Chikkaraddy et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127-130(2016).

    [19] E. C. Garnett et al. Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater., 11, 241-249(2012).

    [20] C. Caucheteur et al. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs. Nat. Commun., 7, 13371(2016).

    [21] N. Jiang, X. Zhuo, J. Wang. Active plasmonics: principles, structures, and applications. Chem. Rev., 118, 3054-3099(2017).

    [22] X. Duan, N. Liu. Magnesium for dynamic nanoplasmonics. Acc. Chem. Res., 52, 1979-1989(2019).

    [23] L. Ju et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol., 6, 630-634(2011).

    [24] Z. Fei et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 487, 82-85(2012).

    [25] A. N. Grigorenko, M. Polini, K. S. Novoselov. Graphene plasmonics. Nat. Photonics, 6, 749-758(2012).

    [26] D. Franklin et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat. Commun., 6, 7337(2015).

    [27] L. Liu et al. Dynamic color‐switching of plasmonic nanoparticle films. Angew. Chem., 131, 16453-16459(2019).

    [28] N. Liu, T. Liedl. DNA-assembled advanced plasmonic architectures. Chem. Rev., 118, 3032-3053(2018).

    [29] X. Duan, S. Kamin, N. Liu. Dynamic plasmonic colour display. Nat. Commun., 8, 14606(2017).

    [30] F. Sterl et al. Magnesium as novel material for active plasmonics in the visible wavelength range. Nano Lett., 15, 7949-7955(2015).

    [31] A. Tsuboi, K. Nakamura, N. Kobayashi. A localized surface plasmon resonance-based multicolor electrochromic device with electrochemically size-controlled silver nanoparticles. Adv. Mater., 25, 3197-3201(2013).

    [32] G. Wang et al. Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano, 10, 1788-1794(2016).

    [33] K. Xiong et al. Plasmonic metasurfaces with conjugated polymers for flexible electronic paper in color. Adv. Mater., 28, 9956-9960(2016).

    [34] C. J. Barile et al. Dynamic windows with neutral color, high contrast, and excellent durability using reversible metal electrodeposition. Joule, 1, 133-145(2017).

    [35] S. M. Islam et al. Hybrid dynamic windows using reversible metal electrodeposition and ion insertion. Nat. Energy, 4, 223-229(2019).

    [36] P. Pattathil, R. Giannuzzi, M. Manca. Self-powered NIR-selective dynamic windows based on broad tuning of the localized surface plasmon resonance in mesoporous ITO electrodes. Nano Energy, 30, 242-251(2016).

    [37] E. Hopmann, A. Y. Elezzabi. Plasmochromic nanocavity dynamic light color switching. Nano Lett., 20, 1876-1882(2020).

    [38] Z. Zhang et al. Thermo-optic coefficients of polymers for optical waveguide applications. Polymer, 47, 4893-4896(2006).

    [39] G. M. Koenig et al. Coupling of the plasmon resonances of chemically functionalized gold nanoparticles to local order in thermotropic liquid crystals. Chem. Mater., 19, 1053-1061(2007).

    [40] M. Liu et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature, 487, 345-348(2012).

    [41] M. Toma et al. Active control of SPR by thermoresponsive hydrogels for biosensor applications. J. Phys. Chem. C, 117, 11705-11712(2013).

    [42] M. Nguyen et al. Engineering thermoswitchable lithographic hybrid gold nanorods as plasmonic devices for sensing and active plasmonics applications. ACS Photonics, 2, 1199-1208(2015).

    [43] Y. Ma et al. Auxetic thermoresponsive nanoplasmonic optical switch. ACS Appl. Mater. Interfaces, 11, 22754-22760(2019).

    [44] M. L. Tseng et al. Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response. Nano Lett., 17, 6034-6039(2017).

    [45] P. Gutruf et al. Mechanically tunable dielectric resonator metasurfaces at visible frequencies. ACS Nano, 10, 133-141(2016).

    [46] M. Miyata et al. Electromechanically tunable plasmonic nanowires operating in visible wavelengths. ACS Photonics, 3, 2268-2274(2016).

    [47] N. I. Zheludev, E. Plum. Reconfigurable nanomechanical photonic metamaterials. Nat. Nanotechnol., 11, 16-22(2016).

    [48] T. Okamoto, T. Kamiyama, I. Yamaguchi. All-optical spatial light modulator with surface plasmon resonance. Opt. Lett., 18, 1570-1572(1993).

    [49] J. Dintinger et al. Terahertz all‐optical molecule‐plasmon modulation. Adv. Mater., 18, 1645-1648(2006).

    [50] M. I. Stockman. Spasers explained. Nat. Photonics, 2, 327-329(2008).

    [51] J. Zhang, K. F. MacDonald, N. I. Zheludev. Controlling light-with-light without nonlinearity. Light: Sci. Appl., 1, e18(2012).

    [52] M. Wang et al. Magnet ic tuning of plasmonic excitation of gold nanorods. J. Am. Chem. Soc., 135, 15302-15305(2013).

    [53] M. Zhang et al. High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture. Nat. Nanotechnol., 12, 228-232(2017).

    [54] H. Li et al. Single‐stimulus-induced modulation of multiple optical properties. Adv. Mater., 31, 1900388(2019).

    [55] I. Jung et al. Fourier transform surface plasmon resonance of nanodisks embedded in magnetic nanorods. Nano Lett., 18, 1984-1992(2018).

    [56] C. J. Dahlman et al. Spectroelectrochemical signatures of capacitive charging and ion insertion in doped anatase titania nanocrystals. J. Am. Chem. Soc., 137, 9160-9166(2015).

    [57] J. Peng et al. Scalable electrochromic nanopixels using plasmonics. Sci. Adv., 5, eaaw2205(2019).

    [58] Y. Jin et al. In operando plasmonic monitoring of electrochemical evolution of lithium metal. Proc. Natl. Acad. Sci. U. S. A., 115, 11168-11173(2018).

    [59] Y. Jin et al. Electrical dynamic switching of magnetic plasmon resonance based on selective lithium deposition. Adv. Mater., 32, 2000058(2020).

    [60] A. Boltasseva, H. A. Atwater. Low-loss plasmonic metamaterials. Science, 331, 290-291(2011).

    [61] M. G. Blaber et al. Plasmon absorption in nanospheres: a comparison of sodium, potassium, aluminium, silver and gold. Phys. B, 394, 184-187(2007).

    [62] Y. Wang et al. Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature, 581, 401-405(2020).

    [63] J. Liu et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy, 4, 180-186(2019).

    [64] D. Lin, Y. Liu, Y. Cui. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol., 12, 194-206(2017).

    [65] C. Niu et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol., 14, 594-601(2019).

    [66] W. Xu et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci., 7, 513-537(2014).

    [67] Y. Montelongo et al. Electrotunable nanoplasmonic liquid mirror. Nat. Mater., 16, 1127-1135(2017).

    [68] D. Sikdar et al. Electrochemical plasmonic metamaterials: towards fast electro-tuneable reflecting nanoshutters. Faraday Discuss., 199, 585-602(2017).

    [69] D. Sikdar, A. A. Kornyshev. An electro-tunable Fabry–Perot interferometer based on dual mirror-on-mirror nanoplasmonic metamaterials. Nanophotonics, 8, 2279-2290(2019).

    [70] D. Sikdar, H. Weir, A. A. Kornyshev. Optical response of electro-tuneable 3D superstructures of plasmonic nanoparticles self-assembling on transparent columnar electrodes. Opt. Express, 27, 26483-26498(2019).

    [71] Y. Ma et al. A tunable nanoplasmonic mirror at an electrochemical interface. ACS Photonics, 5, 4604-4616(2018).

    [72] J. J. Mock et al. Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation. Nano Lett., 12, 1757-1764(2012).

    [73] D. Sikdar, A. A. Kornyshev. Theory of tailorable optical response of two-dimensional arrays of plasmonic nanoparticles at dielectric interfaces. Sci. Rep., 6, 33712(2016).

    [74] D. Sikdar et al. Unravelling the optical responses of nanoplasmonic mirror-on-mirror metamaterials. Phys. Chem. Chem. Phys., 18, 20486-20498(2016).

    [75] A. A. Kornyshev. Electrochemical metamaterials. J. Solid State Electrochem., 24, 2101-2111(2020).

    [76] J. B. Edel et al. Fundamentals and applications of self-assembled plasmonic nanoparticles at interfaces. Chem. Soc. Rev., 45, 1581-1596(2016).

    [77] J. B. Edel, A. A. Kornyshev, M. Urbakh. Self-assembly of nanoparticle arrays for use as mirrors, sensors, and antennas. ACS Nano, 7, 9526-9532(2013).

    [78] S. G. Booth et al. Electrochemical modulation of SERS at the liquid/liquid interface. Chem. Commun., 50, 4482-4484(2014).

    [79] E. L. Runnerstrom et al. Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. Chem. Commun., 50, 10555-10572(2014).

    [80] A. Henglein, P. Mulvaney, T. Linnert. Chemistry of Ag aggregates in aqueous solution: non-metallic oligomeric clusters and metallic particles. Faraday Discuss., 92, 31-44(1991).

    [81] T. Ung et al. Spectroelectrochemistry of colloidal silver. Langmuir, 13, 1773-1782(1997).

    [82] G. Garcia et al. Near‐infrared spectrally selective plasmonic electrochromic thin films. Adv. Opt. Mater., 1, 215-220(2013).

    [83] B. S. Hoener et al. Spectral response of plasmonic gold nanoparticles to capacitive charging: morphology effects. J. Phys. Chem. Lett., 8, 2681-2688(2017).

    [84] C. Novo et al. Electrochemical charging of single gold nanorods. J. Am. Chem. Soc., 131, 14664-14666(2009).

    [85] A. M. Brown, M. T. Sheldon, H. A. Atwater. Electrochemical tuning of the dielectric function of Au nanoparticles. ACS Photonics, 2, 459-464(2015).

    [86] T. Xu et al. High-contrast and fast electrochromic switching enabled by plasmonics. Nat. Commun., 7, 10479(2016).

    [87] D. Franklin et al. Actively addressed single pixel full-colour plasmonic display. Nat. Commun., 8, 15209(2017).

    [88] Y. Lee et al. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator. ACS Photonics, 4, 1954-1966(2017).

    [89] J. Olson et al. High chromaticity aluminum plasmonic pixels for active liquid crystal displays. ACS Nano, 10, 1108-1117(2016).

    [90] C. P. Byers et al. From tunable core–shell nanoparticles to plasmonic drawbridges: active control of nanoparticle optical properties. Sci. Adv., 1, e1500988(2015).

    [91] R. Sardar et al. Gold nanoparticles: past, present, and future. Langmuir, 25, 13840-13851(2009).

    [92] B. S. Hoener et al. Spectroelectrochemistry of halide anion adsorption and dissolution of single gold nanorods. J. Phys. Chem. C, 120, 20604-20612(2016).

    [93] S. Oikawa et al. Nanoscale control of plasmon-active metal nanodimer structures via electrochemical metal dissolution reaction. Nanotechnology, 29, 045702(2018).

    [94] H. Minamimoto et al. Electrochemical fine tuning of the plasmonic properties of Au lattice structures. J. Phys. Chem. C, 122, 14162-14167(2018).

    [95] A. Al-Zubeidi et al. Hot holes assist plasmonic nanoelectrode dissolution. Nano Lett., 19, 1301-1306(2019).

    [96] C. Flatebo et al. Electrodissolution inhibition of gold nanorods with oxoanions. J. Phys. Chem. C, 123, 13983-13992(2019).

    [97] S. Oikawa, H. Minamimoto, K. Murakoshi. Reversible electrochemical tuning of optical property of single Au nano-bridged structure via electrochemical under potential deposition. Chem. Lett., 46, 1148-1150(2017).

    [98] Y. Jin, S. Dong. Probing UPD-induced surface atomic rearrangement of polycrystalline gold nanofilms with surface plasmon resonance spectroscopy and cyclic voltammetry. J. Phys. Chem. B, 107, 13969-13975(2003).

    [99] M. Schweizer, H. Hagenström, D. M. Kolb. Potential-induced structure transitions in self-assembled monolayers: ethanethiol on Au(100). Surf. Sci., 490, L627-L636(2001).

    [100] O. Quevedo-Teruel et al. Roadmap on metasurfaces. J. Opt., 21, 073002(2019).

    [101] Y. Ke et al. Emerging thermal-responsive materials and integrated techniques targeting the energy-efficient smart window application. Adv. Funct. Mater., 28, 1800113(2018).

    [102] G. Cai et al. Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity. Chem. Sci., 7, 1373-1382(2016). https://doi.org/10.1039/C5SC03727A

    [103] Y. Huang et al. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light: Sci. Appl., 9, 105(2020).

    [104] K. H. Kim et al. Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes. Nat. Commun., 5, 4769(2014).

    [105] M. Christophersen, B. F. Phlips. Recent patents on electrophoretic displays and materials. Recent Pat. Nanotechnol., 4, 137-149(2010).

    [106] L. Shao et al. Advanced plasmonic materials for dynamic color display. Adv. Mater., 30, 1704338(2018).

    [107] Y. Chen et al. Dynamic color displays using stepwise cavity resonators. Nano Lett., 17, 5555-5560(2017).

    [108] Y. Gao et al. Lead halide perovskite nanostructures for dynamic color display. ACS Nano, 12, 8847-8854(2018).

    [109] H. W. Chen et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light: Sci. Appl., 7, 17168(2018).

    [110] C. Jing et al. New insights into electrocatalysis based on plasmon resonance for the real-time monitoring of catalytic events on single gold nanorods. Anal. Chem., 86, 5513-5518(2014).

    [111] B. S. Hoener et al. Plasmonic sensing and control of single-nanoparticle electrochemistry. Chem, 4, 1560-1585(2018).

    [112] L. Velleman et al. Monitoring plasmon coupling and SERS enhancement through in situ nanoparticle spacing modulation. Faraday Discuss., 205, 67-83(2017).

    [113] M. P. Cecchini et al. Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nat. Mater., 12, 165-171(2013).

    [114] Y. Ma et al. Electrotunable nanoplasmonics for amplified surface enhanced Raman spectroscopy. ACS Nano, 14, 328-336(2020).

    CLP Journals

    [1] Zhengji Wen, Jialiang Lu, Weiwei Yu, Hao Wu, Hao Xie, Xiaohang Pan, Qianqian Xu, Ziji Zhou, Chong Tan, Dongjie Zhou, Chang Liu, Yan Sun, Ning Dai, Jiaming Hao. Dynamically reconfigurable subwavelength optical device for hydrogen sulfide gas sensing[J]. Photonics Research, 2021, 9(10): 2060

    Yan Jin, Lin Zhou, Jie Liang, Jia Zhu. Electrochemically driven dynamic plasmonics[J]. Advanced Photonics, 2021, 3(4): 044002
    Download Citation