• Chinese Journal of Lasers
  • Vol. 50, Issue 8, 0802102 (2023)
Tianyi Li1, Tuo Shi1、*, Kuan Li2, Rongwei Zhang2, Jianbin Li2, Yewang Sun1, and Guang Liu2
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, Jiangsu, China
  • 2School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215021, Jiangsu, China
  • show less
    DOI: 10.3788/CJL220746 Cite this Article Set citation alerts
    Tianyi Li, Tuo Shi, Kuan Li, Rongwei Zhang, Jianbin Li, Yewang Sun, Guang Liu. Height and Width Model of Cladding Layer Formed by Laser Cladding with Variable Angle[J]. Chinese Journal of Lasers, 2023, 50(8): 0802102 Copy Citation Text show less
    Comparison of single-track section in a single-layer and multi-layers
    Fig. 1. Comparison of single-track section in a single-layer and multi-layers
    Principle of powder feeding in annular laser beam
    Fig. 2. Principle of powder feeding in annular laser beam
    Structural representation of closed-loop control of cladding height system
    Fig. 3. Structural representation of closed-loop control of cladding height system
    Variable angle thin wall deposition experiment. (a) 30°; (b) 60°; (c) 90°; (d) 135°
    Fig. 4. Variable angle thin wall deposition experiment. (a) 30°; (b) 60°; (c) 90°; (d) 135°
    Comparison of forming effect at the same inclination angle (partially)
    Fig. 5. Comparison of forming effect at the same inclination angle (partially)
    Trend of measurement data by layer height control system. (a) Trend of thin wall layer height; (b) cross section of thin wall
    Fig. 6. Trend of measurement data by layer height control system. (a) Trend of thin wall layer height; (b) cross section of thin wall
    Variation of measured cladding layer height with process parameters
    Fig. 7. Variation of measured cladding layer height with process parameters
    Variation of measured cladding layer width with process parameters
    Fig. 8. Variation of measured cladding layer width with process parameters
    BP neural network topology
    Fig. 9. BP neural network topology
    Prediction result of test set. (a) Prediction result of layer width; (b) prediction result of layer height
    Fig. 10. Prediction result of test set. (a) Prediction result of layer width; (b) prediction result of layer height
    Prediction effect of cladding layer height and width models. (a) Layer height prediction variance; (b) layer width prediction variance
    Fig. 11. Prediction effect of cladding layer height and width models. (a) Layer height prediction variance; (b) layer width prediction variance
    ElementMass fraction/%
    FeBal.
    C0.1
    Cr15.0
    B1.0
    Si1.0
    Ni1.0
    Table 1. Chemical composition of F314 iron-based alloy powder
    Angle /(°)Fixed scanning speed Vs /(mm·s-1Processing window of laser power P /W
    08[600,1600]
    308[600,1600]
    608[750,1500]
    908[800,1500]
    1208[800,1400]
    1508[800,1200]
    1808[800,900]
    Table 2. Single factor experiment table of laser power
    Angle/(°)

    Fixed power

    P /W

    Processing window of scanning speed Vs /(mm·s-1
    0800[3.5,8]
    30800[3.5,8]
    60800[3.5,8]
    90800[3.5,8]
    120800[3.5,8]
    15080048
    180800[6.5,8]
    Table 3. Single factor experiment table of scanning speed
    Network parameterWidth-BPHeight-BP
    Learning rate0.10.1
    Maximum number of iterations50005000
    Training target error0.010.01
    The number of hidden neurons44
    Nodes of each hidden neurons[6,10,10,6][6,10,10,6]
    Table 4. Neural network parameter of angle-varied cladding height and width
    Tianyi Li, Tuo Shi, Kuan Li, Rongwei Zhang, Jianbin Li, Yewang Sun, Guang Liu. Height and Width Model of Cladding Layer Formed by Laser Cladding with Variable Angle[J]. Chinese Journal of Lasers, 2023, 50(8): 0802102
    Download Citation