• Optics and Precision Engineering
  • Vol. 31, Issue 9, 1357 (2023)
Jinpeng SHI and Xu ZHANG*
Author Affiliations
  • School of Mechanical and Automobile Engineering, Shanghai University of Engineering Science, Shanghai201620, China
  • show less
    DOI: 10.37188/OPE.20233109.1357 Cite this Article
    Jinpeng SHI, Xu ZHANG. Multi-lane line detection and tracking network based on spatial semantics segmentation[J]. Optics and Precision Engineering, 2023, 31(9): 1357 Copy Citation Text show less
    References

    [1] T TOROYAN. Global status report on road safety. Injury Prevention, 15, 286(2009).

    [2] B HUVAL, T WANG, S TANDON et al. An Empirical Evaluation of Deep Learning on Highway Driving. arXiv, 1504-01716(2015). https://arxiv.org/abs/1504.01716

    [3] A B HILLEL, R LERNER, D LEVI et al. Recent progress in road and lane detection: a survey. Machine Vision and Applications, 25, 727-745(2014).

    [4] 4何旭光, 江磊, 罗一平, 等. 基于Hough变换的车道线检测算法设计[J]. 农业装备与车辆工程, 2019, 57(11): 90-91, 107. doi: 10.3969/j.issn.1673-3142.2019.11.022HEX G, JIANGL, LUOY P, et al. Design of lane detection algorithm based on Hough transform[J]. Agricultural Equipment & Vehicle Engineering, 2019, 57(11): 90-91, 107.(in Chinese). doi: 10.3969/j.issn.1673-3142.2019.11.022

    [5] 5马泉钧, 何自超, 林邦演, 等. 基于图像处理的长距离车道线检测[J]. 河南科技, 2019(29): 111-113. doi: 10.3969/j.issn.1003-5168.2019.29.042MAQ J, HEZ CH, LINB Y, et al. Long distance lane detection based on image processing[J]. Henan Science and Technology, 2019(29): 111-113.(in Chinese). doi: 10.3969/j.issn.1003-5168.2019.29.042

    [6] A KRIZHEVSKY, I SUTSKEVER, G E HINTON. ImageNet classification with deep convolutional neural networks, 1097-1105(2012).

    [7] M D ZEILER, R FERGUS. Visualizing and Understanding Convolutional Networks. arXiv, 1311-2901(2013). https://arxiv.org/abs/1311.2901

    [8] 8崔文靓,王玉静,康守强,等. 基于改进YOLOv3算法的公路车道线检测方法[J]. 自动化学报,2022,48(6):1560-1568. doi: 10.16383/j.aas.c190178CUIW Q,WANGY J,KANGS Q,et al. Highway lane line detection method based on improved YOLOv3 algorithm[J]. Journal of Automation. 2022,48(6):1560-1568. (in Chinese). doi: 10.16383/j.aas.c190178

    [9] 9王若霄, 徐智勇, 张建林. 跨深度的卷积特征增强目标检测算法[J]. 计算机工程与设计, 2020, 41(7): 1864-1871. doi: 10.16208/j.issn1000-7024.2020.07.011WANGR X, XUZH Y, ZHANGJ L. Cross-depth convolutional feature enhancement algorithm for object detection[J]. Computer Engineering and Design, 2020, 41(7): 1864-1871.(in Chinese). doi: 10.16208/j.issn1000-7024.2020.07.011

    [10] X G PAN, J P SHI, P LUO et al. Spatial as deep: spatial CNN for traffic scene understanding. Proceedings of the AAAI Conference on Artificial Intelligence, 32(2018).

    [11] F PIZZATI, F GARCÍA. Enhanced free space detection in multiple lanes based on single CNN with scene identification, 2536-2541(2019).

    [12] 12刘彬, 刘宏哲. 基于改进Enet网络的车道线检测算法[J]. 计算机科学, 2020, 47(4): 142-149. doi: 10.11896/jsjkx.190500021LIUB, LIUH ZH. Lane detection algorithm based on improved enet network[J]. Computer Science, 2020, 47(4): 142-149.(in Chinese). doi: 10.11896/jsjkx.190500021

    [13] Q B HOU, L ZHANG, M M CHENG et al. Strip pooling: rethinking spatial pooling for scene parsing, 4002-4011(2020).

    [14] D NEVEN, B DE BRABANDERE, S GEORGOULIS et al. Towards end-to-end lane detection: an instance segmentation approach, 286-291(2018).

    [15] K SIMONYAN, A ZISSERMAN. Very deep convolutional networks for large-scale image recognition. CoRR, 1556(2014).

    [16] D BOLYA, C ZHOU, F Y XIAO et al. YOLACT: real-time instance segmentation, 9156-9165.

    [17] H CHEN, K Y SUN, Z TIAN et al. BlendMask: top-down meets bottom-up for instance segmentation, 8570-8578(2020).

    Jinpeng SHI, Xu ZHANG. Multi-lane line detection and tracking network based on spatial semantics segmentation[J]. Optics and Precision Engineering, 2023, 31(9): 1357
    Download Citation