• Frontiers of Optoelectronics
  • Vol. 4, Issue 4, 349 (2011)
Davinder RATHEE1、*, Sandeep K ARYA1, and Mukesh KUMAR2
Author Affiliations
  • 1Department of Electronics and Communication Engineering, Guru Jambheshwar University of Science & Technology, Hisar, India
  • 2Department of Electronics Science, Kurukshetra University, Kurukshetra, India
  • show less
    DOI: 10.1007/s12200-011-0188-z Cite this Article
    Davinder RATHEE, Sandeep K ARYA, Mukesh KUMAR. Analysis of TiO2 for microelectronic applications: effect of deposition methods on their electrical properties[J]. Frontiers of Optoelectronics, 2011, 4(4): 349 Copy Citation Text show less
    References

    [1] Borkowska A, Domaradzki J, Kaczmarek D. Characterization of TiO2 and TiO2-HfO2 transparent thin films for microelectronics applications. In: 2006 International students and Young Scientist Workshop, Photonic and Microsystems. 2006: 5-8

    [2] Masuda Y, Jinbo Y, Yonzawa T, Koumoto K. Templeted site selective deposition of Titanium dioxide and self assembled monolayer. Chemistry of Materials, 2002, 14(3): 1236-1241

    [3] Fuyuki T, Matsunami H. Electronic properties of the interface between Si and TiO2 deposited at very low temperatures. Japanese Journal of Applied Physics, 1986, 25(9): 1288-1291

    [4] Su C, Hong B Y, Tseng CM. Sol-gel preparation and photocatalysis of titanium dioxide. Catalysis Today, 2004, 96(3): 119-126

    [5] Wong H, Iwai H. On the scaling issues and high-κ replacement of ultrathin gate dielectrics for nanoscale MOS transistors. Microelectronic Engineering, 2006, 83(10): 1867-1904

    [6] Gan J Y, Chang Y C, Wu T B. Dielectric property of (TiO2)x-(Ta2O5)1-x thin films. Applied Physics Letters, 1998, 72(3): 332

    [7] Westlinder J. Investigation of novel metal gate and high-k dielectric materials for CMOS technologies. PhD Thesis Uppsala: Acta Universitatis Upsaliensis, 2004: 8-72 www.uu.diva-portal.org/smash/get/diva2:165233/FULLTEXT01

    [8] Zhang L, Mu JM. Nanomaterial and Nanostructure. Bejing: Science Press, 2001

    [9] Kostlin H, Frank G, Hebbinghaus G, Auding H, Denissen K. Optical filters on linear halogen-lamps prepared by dip-coating. Journal of Non-Crystalline Solids, 1997, 218: 347-353

    [10] Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 1997, 97: 2373-2420

    [11] Pomoni K, Vomvas A, Trapalis C. Transient photoconductivity of nanocrystalline TiO2 sol-gel thin films. Thin Solid Films, 2005, 479(1-2): 160-165

    [12] ITRS 2003, Edition, Semiconductor Industry Association (SIA), Austin, SEMATECH USA, 2706 from: www.itrs.net/links/2003

    [13] Kurakula S R. Studies on the electrical properties of titanium dioxide thin film dielectrics for microelectronic applications. Dissertation for the Master’s Degree. Indian Institute of Science, 2007: 1-45

    [14] Gusev E P, Cartier E, Buchanan D A, Gribelyuk M, Copel M, Okorn-Schmidt H, D’Emic C. Ultrathin high-K metal oxides on silicon: processing, characterization and integration issues. Microelectronic Engineering, 2001, 59(1-4): 341-349

    [15] Lobl P, Huppertz M, Mergel D. Nucleation and growth in TiO2 films prepared by sputtering and evaporation. Thin Solid Films, 1994, 251(1): 72-79

    [16] Georgia J, Armynov S, Volva E, Oulios I P, Sotiropoulos S. Preparation and photoelectrochemical characterisation of electrosynthesised titanium dioxide deposits on stainless steel substrates. Electrochimica Acta, 2006, 51(10): 2076-2087

    [17] Battiston G A, Gerbai R, Porchia M, Margio A. Influence of substrate on structural properties of TiO2 thin films obtained via MOCVD. Thin Solid Films, 1994, 239(2): 186-191

    [18] Lobl H P, Huppertz M, Mergel D. ITO films for antireflective and antistatic tube coatings prepared by direct current magnetron sputtering. Surface and Coatings Technology, 1996, 82(1-2): 90-98

    [19] Meng L J, dos Santos M P. Investigations of titanium oxide films deposited by direct current reactive magnetron sputtering in different sputtering pressures. Thin Solid Films, 1993, 226(1): 22-29

    [20] Martin N, Rousselt C, Savll C, Palmino F. Characterizations of titanium oxide films prepared by radio frequency magnetron sputtering. Thin Solid Films, 1996, 287 (1-2): 154-163

    [21] Fernandez L A, Espinos J P, Belderrain T R, Gonzalez-Elipe A R. Ion beam induced chemical vapor deposition procedure for the preparation of oxide thin films. II. Preparation and characterization of AlxTiyOz thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films, 1996, 14 (5): 2842-2848

    [22] Liu H M, Yang W S, Ma Y, Cao Y A, Yao J N, Zhang J, Hu T D. Synthesis and characterization of titania prepared by using a photoassisted Sol-Gel method. Langmuir, 2003, 19(7): 3001-3005

    [23] Chowdhury P, Barshilia Harish C, Selvakumar N, Deepthi B, Rajam K S, Chaudhuri A R, Krupanidhi S B. The structural and electrical properties of TiO2 thin films prepared by thermal oxidation. Physica B, Condensed Matter, 2008, 403(19-20): 3718-3723

    [24] Hitchman M L, Tian F. Studies of TiO2 thin films prepared by chemical vapour deposition for photocatalytic and photoelectrocatalytic degradation of 4-chlorophenol. Journal of Electroanalytical Chemistry, 2002, 538-539: 165-172

    [25] Kaliwoh N, Zhang J Y, Boyd I W. Characterisation of TiO2 deposited by photo-induced chemical vapour deposition. Applied Surface Science, 2002, 186(1-4): 241-245

    [26] Babelon P, Dequiedt A S, Mostefa-Sba H, Bourgeois S, Sibillot P, Sacilotti M. SEM and XPS studies of titanium dioxide thin films grown by MOCVD. Thin Solid Films, 1998, 322(1-2): 63-67

    [27] Chakraborty S, Bera M K, Bhattachary S, Maiti C K. Current conduction mechanism in TiO2 gate dielectrics. Microelectronic Engineering, 2005, 81: 188-193

    [28] Chong L H, Malik K, de Groot C H, Kersting R. The structural and electrical properties of thermally grown TiO2 thin films. Journal of Physics Condensed Matter, 2006, 18(2): 645

    [29] Sze S M. Physics of Semiconductor Devices. New York: Wiley-Interscience, 1969, 496

    [30] Dalapati G K, Chatteraje S, Shrama S K, Nandi S K, Bose P K, Varma S, Patil S, Maiti C K. Electrical properties of ultrathin TiO2 films on Si1-yCy heterolayers. Solid-State Electronics, 2003, 47(10): 1793-1798

    [31] Zhang X W, Han G R. Microporous textured titanium dioxide films deposited at atmospheric pressure using dielectric barrier discharge assisted chemical vapor deposition. Thin Solid Films, 2008, 516(18): 6140-6144

    [32] Ivan H, Pullmannov A, Martin P, Juraj H, Kups T, Spiess L. Communications structural and morphological investigations of TiO2 sputtered thin films. Communications, 2009, 60(6): 354-357

    [33] Bendavid A, Martin P J, Takikawa H. Deposition and modification of titanium dioxide thin films by filtered arc deposition. Thin Solid Films, 2000, 360(1-2): 241-249

    [34] Ohsaka T, Izumi F, Fujiki Y. Raman spectrum of anatase, TiO2. Journal of Raman Spectroscopy, 1978, 7(6): 321-324

    [35] Vigil E, Saadoun L, Ayllon J A, Domènechc X, Zumetaa I, Rodr guez-Clemente R. TiO2 thin film deposition from solution using microwave heating. Thin Solid Films, 2000, 365(1): 12-18

    [36] Rathee D, Kumar M, Arya S K. CMOS Development optimization, scaling issue and replacement with high-k material for future microelectronics. International Journal of Computer Application, 2010, 8(5): 10-17

    [37] Zhang H Z, Banfield J F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. Journal of Physical Chemistry B, 2000, 104(15): 3481-3487

    [38] Rathee D S, Sharma R, Pandey M. The Roadmap for CMOS scaling and optoelectronics devices. In: Proceedings of National Conference ITM. 2007, 82-87

    [39] Jang H D, Kim S K, Kim S J. Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. Journal of Nanoparticle Research, 2001, 3(2-3): 141-147

    Davinder RATHEE, Sandeep K ARYA, Mukesh KUMAR. Analysis of TiO2 for microelectronic applications: effect of deposition methods on their electrical properties[J]. Frontiers of Optoelectronics, 2011, 4(4): 349
    Download Citation