• Photonics Research
  • Vol. 9, Issue 2, 98 (2021)
Yuan Yao1、†, Bo Li1、†, Guang Yang1, Xiaotong Chen1, Yaqin Hao1, Hongfu Yu1, Yanyi Jiang1、2、3、*, and Longsheng Ma1、2、4、*
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 3e-mail: yyjiang@phy.ecnu.edu.cn
  • 4e-mail: lsma@phy.ecnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.409534 Cite this Article Set citation alerts
    Yuan Yao, Bo Li, Guang Yang, Xiaotong Chen, Yaqin Hao, Hongfu Yu, Yanyi Jiang, Longsheng Ma. Optical frequency synthesizer referenced to an ytterbium optical clock[J]. Photonics Research, 2021, 9(2): 98 Copy Citation Text show less
    References

    [1] J. A. Scheer, J. L. Kurtz. Coherent Radar Performance Estimation(1993).

    [2] T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams. Generation of ultrastable microwaves via optical frequency division. Nat. Photonics, 5, 425-429(2011).

    [3] T. Nakamura, J. Davila-Rodriguez, H. Leopardi, J. A. Sherman, T. M. Fortier, X. Xie, J. C. Campbell, W. F. McGrew, X. Zhang, Y. S. Hassan, D. Nicolodi, K. Beloy, A. D. Ludlow, S. A. Diddams, F. Quinlan. Coherent optical clock down-conversion for microwave frequencies with 10–18 instability. Science, 368, 889-892(2020).

    [4] B. C. Young, F. C. Cruz, W. M. Itano, J. C. Bergquist. Visible lasers with subhertz linewidths. Phys. Rev. Lett., 82, 3799-3802(1999).

    [5] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, C. W. Oates. Making optical atomic clocks more stable with 10–16-level laser stabilization. Nat. Photonics, 5, 158-161(2011).

    [6] T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, J. Ye. Comparison of two dependent Sr optical clocks with 1 × 10–17 stability at 103  s. Phys. Rev. Lett., 109, 230801(2012).

    [7] S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, U. Sterr. 8 × 10–17 fractional laser frequency instability with a long room-temperature cavity. Opt. Lett., 40, 2112-2115(2015).

    [8] L. Jin, Y. Jiang, Y. Yao, H. Fu, Z. Bi, L. Ma. Laser frequency instability of 2 × 10–16 by stabilizing to 30-cm-long Fabry-Perot cavities at 578  nm. Opt. Express, 26, 18699-18707(2018).

    [9] D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, U. Sterr. 1.5  μm lasers with sub-10  mHz linewidth. Phys. Rev. Lett., 118, 263202(2017).

    [10] J. M. Robinson, E. Oelker, W. R. Milner, W. Zhang, T. Legero, D. G. Matei, F. Riehle, U. Sterr, J. Ye. Crystalline optical cavity at 4  K with thermal-noise-limited instability and ultralow drift. Optica, 6, 240-243(2019).

    [11] T. Bothwell, D. Kedar, E. Oelker, J. M. Robinson, S. L. Bromley, W. L. Tew, J. Ye, C. J. Kennedy. JILA SrI optical lattice clock with uncertainty of 2.0 × 10–18. Metrologia, 56, 065004(2019).

    [12] W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, A. D. Ludlow. Atomic clock performance enabling geodesy below the centimeter level. Nature, 564, 87-90(2018).

    [13] E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, E. Riehle, U. Sterr, J. Ye. Demonstration of 4.8 × 10–17 stability at 1  s for two independent optical clocks. Nat. Photonics, 13, 714-719(2019).

    [14] S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, D. R. Leibrandt. 27Al+ quantum-logic clock with a systematic uncertainty below 10–18. Phys. Rev. Lett., 123, 033201(2019).

    [15] N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, E. Peik. Single-ion atomic clock with 3 × 10–18 systematic uncertainty. Phys. Rev. Lett., 116, 063001(2016).

    [16] M. S. Safronova, D. Budker, D. MeMille, D. F. J. Kimball, A. Derevianko, C. W. Clark. Search for new physics with atoms and molecules. Rev. Mod. Phys., 90, 025008(2018).

    [17] C. W. Chou, D. B. Hume, T. Rosenband, D. J. Wineland. Optical clocks and relativity. Science, 329, 1630-1633(2010).

    [18] M. Takamoto, I. Ushijima, N. Ohmae, T. Yahagi, K. Kokado, H. Shinkai, H. Katori. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photonics, 14, 411-414(2020).

    [19] C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M. S. Safronova, S. G. Porsev. Optical clock comparison test of Lorentz symmetry. Nature, 567, 204-208(2019).

    [20] S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, J. Ye. Gravitational wave detection with optical lattice atomic clocks. Phys. Rev. D, 94, 124043(2016).

    [21] R. M. Roberts, G. Blewitt, C. Dailey, M. Murphy, M. Pospelov, A. Rollings, J. Sherman, W. Williams, A. Derevianko. Search for domain wall dark matter with atomic clocks on board global positioning system satellites. Nat. Commun., 8, 1195(2017).

    [22] J. D. Jost, J. L. Hall, J. Ye. Continuously tunable, precise, single frequency optical signal generator. Opt. Express, 10, 515-520(2002).

    [23] Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, L. Ma. A low noise optical frequency synthesizer at 700–990  nm. Appl. Phys. Lett., 109, 131102(2016).

    [24] D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, S. B. Papp. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81-85(2018).

    [25] J. L. Hall. Nobel lecture: defining and measuring optical frequencies. Rev. Mod. Phys., 78, 1279-1295(2006).

    [26] T. W. Hänsch. Nobel lecture: passion for precision. Rev. Mod. Phys., 78, 1297-1309(2006).

    [27] L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, S. A. Diddams. Optical frequency synthesis and comparison with uncertainty at the 10–19 level. Science, 303, 1843-1845(2004).

    [28] D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, Y. Le Coq. Spectral purity transfer between optical wavelengths at the 10–18 level. Nat. Photonics, 8, 219-223(2014).

    [29] Y. Yao, Y. Jiang, H. Yu, Z. Bi, L. Ma. Optical frequency divider with division uncertainty at the 10–21 level. Natl. Sci. Rev., 3, 463-469(2016).

    [30] H. Leopardi, J. Davila-Rodriguez, F. Quinlan, J. Olson, J. A. Sherman, S. A. Diddams, T. M. Fortier. Single-branch Er:fiber frequency comb for precision optical metrology with 10–18 fractional instability. Optica, 4, 879-885(2017).

    [31] A. Rolland, P. Li, N. Kuse, J. Jiang, M. Cassinerio, C. Langrock, M. E. Fermann. Ultra-broadband dual-branch optical frequency comb with 10–18 instability. Optica, 5, 1070-1077(2018).

    [32] E. Benkler, B. Lipphardt, T. Puppe, R. Wilk, F. Rohde, U. Sterr. End-to-end topology for fiber comb based optical frequency transfer at the 10–21 level. Opt. Express, 27, 36886-36902(2019).

    [33] M. Giunta, W. Hänsel, M. Fischer, M. Lezius, T. Udem, R. Holzwarth. Real-time phase tracking for wide-band optical frequency measurements at the 20th decimal place. Nat. Photonics, 14, 44-49(2020).

    [34] K. Kashiwagi, Y. Nakajima, M. Wada, S. Okubo, H. Inaba. Multi-branch fiber comb with relative frequency uncertainty at 10–20 using fiber noise difference cancellation. Opt. Express, 26, 8831-8840(2018).

    [35] H. R. Telle, B. Lipphardt, J. Stenger. Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements. Appl. Phys. B, 74, 1-6(2002).

    [36] N. Scharnhorst, J. B. Wübbena, S. Hannig, K. Jakobsen, J. Kramer, I. D. Leroux, P. O. Schmidt. High-bandwidth transfer of phase stability through a fiber frequency comb. Opt. Express, 23, 19771-19777(2015).

    [37] C. Hagemann, C. Grebing, T. Kessler, S. Falke, N. Lemke, C. Lisdat, H. Schnatz, F. Riehle, U. Sterr. Providing 10–16 short-term stability of a 1.5-μm laser to optical clocks. IEEE Trans. Instrum. Meas., 62, 1556-1562(2013).

    [38] L. A. M. Johnson, P. Gill, H. S. Margolis. Evaluating the performance of the NPL femtosecond frequency combs: agreement at the 10–21 level. Metrologia, 52, 62-71(2015).

    [39] X. Chen, Y. Jiang, B. Li, H. Yu, H. Jiang, T. Wang, Y. Yao, L. Ma. Laser frequency instability of 6 × 10–16 using 10-cm-long cavities on a cubic spacer. Chin. Opt. Lett., 18, 030201(2020).

    [40] Y. Jiang, Z. Bi, L. Robertsson, L.-S. Ma. A collinear self-referencing set-up for control of the carrier-envelope offset frequency in Ti:sapphire femtosecond laser frequency combs. Metrologia, 42, 304-307(2005).

    [41] D. Yeaton-Massey, R. X. Adhikari. A new bound on excess frequency noise in second harmonic generation in PPKTP at the 10–19 level. Opt. Express, 20, 21019-21024(2012).

    [42] L.-S. Ma, P. Jungner, J. Ye, J. L. Hall. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by optical fiber or other time-varying path. Opt. Lett., 19, 1777-1779(1994).

    [43] Y. Sun, Y. Yao, Y. Hao, H. Yu, Y. Jiang, L. Ma. Laser stabilizing to ytterbium clock transition with Rabi and Ramsey spectroscopy. Chin. Opt. Lett., 18, 070201(2020).

    [44] M. Pizzocaro, P. Thoumany, B. Rauf, F. Bregolin, G. Milani, C. Clivati, G. A. Costanzo, F. Levi, D. Calonico. Absolute frequency measurement of the 1S03P0 transition of 171Yb. Metrologia, 54, 102-112(2017).

    [45] C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, S. J. Park, T. Y. Kwon, S.-B. Lee. Absolute frequency measurement of 1S0(F = 1/2)–3P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS. Metrologia, 50, 119-128(2013).

    [46] T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, J. Ye. Systematic evaluation of an atomic clock at 2 × 10–18 total uncertainty. Nat. Commun., 6, 6896(2015).

    [47] G. J. Dick. Local oscillator induced instabilities in trapped ion frequency standards. Proceedings of the 19th Annual Precise Time and Time Interval Systems and Applications Meeting, 133-147(1987).

    CLP Journals

    [1] Guang Yang, Haosen Shi, Yuan Yao, Hongfu Yu, Yanyi Jiang, Albrecht Bartels, Longsheng Ma. Long-term frequency-stabilized optical frequency comb based on a turnkey Ti:sapphire mode-locked laser[J]. Chinese Optics Letters, 2021, 19(12): 121405

    Yuan Yao, Bo Li, Guang Yang, Xiaotong Chen, Yaqin Hao, Hongfu Yu, Yanyi Jiang, Longsheng Ma. Optical frequency synthesizer referenced to an ytterbium optical clock[J]. Photonics Research, 2021, 9(2): 98
    Download Citation