• Chinese Journal of Lasers
  • Vol. 49, Issue 24, 2407205 (2022)
Xiaoxue Zhong, Guowu Huang, Hongbo Miu, Chenghao Hu, Wei Liu, Chunrong Sun, Zhihua Chen, Gangning Li, Zili Cao, Xin Jin, and Weihao Lin*
Author Affiliations
  • College of Optometry (College of Biomedical Engineering), Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
  • show less
    DOI: 10.3788/CJL202249.2407205 Cite this Article Set citation alerts
    Xiaoxue Zhong, Guowu Huang, Hongbo Miu, Chenghao Hu, Wei Liu, Chunrong Sun, Zhihua Chen, Gangning Li, Zili Cao, Xin Jin, Weihao Lin. Noninvasive Quantitative Assessment of Burn Degree Based on Spatial Frequency-Domain Imaging[J]. Chinese Journal of Lasers, 2022, 49(24): 2407205 Copy Citation Text show less
    References

    [1] Haagsma J A, Graetz N, Bolliger I et al. The global burden of injury: incidence, mortality, disability-adjusted life years and time trends from the Global Burden of Disease study 2013[J]. Injury Prevention, 22, 3-18(2016).

    [2] Ye C P, Li Q, Zhang J W et al. Epidemiological characteristics and trend of burned patients in a hospital in Guangzhou from 2017 to 2020[J]. Occupational Health and Emergency Rescue, 40, 90-94(2022).

    [3] Tian H, Wang L X, Xie W G et al. Epidemiologic and clinical characteristics of severe burn patients: results of a retrospective multicenter study in China, 2011-2015[J]. Burns & Trauma, 6, 14(2018).

    [4] Smolle C, Cambiaso-Daniel J, Forbes A A et al. Recent trends in burn epidemiology worldwide: a systematic review[J]. Burns, 43, 249-257(2017).

    [5] Fan X M, Ma B, Zeng D et al. Burns in a major burns center in East China from 2005 to 2014: incidence and outcome[J]. Burns, 43, 1586-1595(2017).

    [6] Heimbach D, Engrav L, Grube B et al. Burn depth: a review[J]. World Journal of Surgery, 16, 10-15(1992).

    [7] Jackson D M. The diagnosis of the depth of burning[J]. British Journal of Surgery, 40, 588-596(2005).

    [8] Xue E Y, Chandler L K, Viviano S L et al. Use of FLIR ONE smartphone thermography in burn wound assessment[J]. Annals of Plastic Surgery, 80, S236-S238(2018).

    [9] Cerussi A E, Jakubowski D B, Shah N et al. Spectroscopy enhances the information content of optical mammography[J]. Biomedical Optics, 7, 60-71(2002).

    [10] Kaiser M, Yafi A, Cinat M et al. Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities[J]. Burns, 37, 377-386(2011).

    [11] Calzavara-Pinton P, Longo C, Venturini M et al. Reflectance confocal microscopy for in vivo skin imaging[J]. Photochemistry and Photobiology, 84, 1421-1430(2008).

    [12] McGill D J, Sørensen K, MacKay I R et al. Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy[J]. Burns, 33, 833-842(2007).

    [13] Amaan M, Sharif S A, David C J et al. Spatial frequency domain imaging of port wine stain biochemical composition in response to laser therapy: a pilot study[J]. Lasers in Surgery and Medicine, 44, 611-621(2012).

    [14] Nguyen J Q M, Crouzet C, Mai T et al. Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity[J]. Journal of Biomedical Optics, 18, 066010(2013).

    [15] Vervandier J, Gioux S. Single snapshot imaging of optical properties[J]. Biomedical Optics Express, 4, 2938-2944(2013).

    [16] Ponticorvo A, Burmeister D M, Yang B et al. Quantitative assessment of graded burn wounds in a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI)[J]. Biomedical Optics Express, 5, 3467-3481(2014).

    [17] Konecky S D, Mazhar A, Cuccia D et al. Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light[J]. Optics Express, 17, 14780-14790(2009).

    [18] Saager R B, Truong A, Durkin A J et al. Method for depth-resolved quantitation of optical properties in layered media using spatially modulated quantitative spectroscopy[J]. Journal of Biomedical Optics, 16, 077002(2011).

    [19] O’Sullivan T D, Cerussi A E, Tromberg B J et al. Diffuse optical imaging using spatially and temporally modulated light[J]. Journal of Biomedical Optics, 17, 071311(2012).

    [20] Dan M, Liu M H, Gao F. Real-time implementation of single-pixel spatial frequency domain imaging[J]. Chinese Journal of Lasers, 49, 0507207(2022).

    [21] Liu M H, Dan M, Gao F. Correction method for spatial frequency domain imaging based on target profile measurement[J]. Laser & Optoelectronics Progress, 58, 1011027(2021).

    [22] Kang X, Zhang Y, Ren H M et al. An approach for extracting optical and physiological parameters of human skin tissue based on spatial frequency domain imaging[J]. Chinese Journal of Lasers, 49, 0507210(2022).

    [23] Cao Z L, Chen X L, Pan D et al. Application of spatial frequency domain imaging in quantitative evaluation of skin diseases[J]. Chinese Journal of Medical Physics, 37, 714-719(2020).

    [24] Luo Q M, Zhang Z X[M]. Medical photonics, 23-67(2018).

    [25] Xu M, Cao Z L, Lin W H et al. Single snapshot multiple frequency modulated imaging of subsurface optical properties of turbid media with structured light[J]. AIP Advances, 6, 125208(2016).

    [26] Xu M. Diagnosis of the phase function of random media from light reflectance[J]. Scientific Reports, 6, 22535(2016).

    [27] Lin W H, Zeng B X, Cao Z L et al. Quantitative diagnosis of tissue microstructure with wide-field high spatial frequency domain imaging[J]. Biomedical Optics Express, 9, 2905-2916(2018).

    [28] Nguyen T T A, Ramella-Roman J C, Moffatt L T et al. Novel application of a spatial frequency domain imaging system to determine signature spectral differences between infected and noninfected burn wounds[J]. Journal of Burn Care & Research, 34, 44-50(2013).

    [29] Wu B, Tian F Y, Zhan M et al. Development of animal burn models in rats: a systematic review[J]. Chinese Journal of Evidence-Based Medicine, 16, 1354-1359(2016).

    [30] Stone C K, Humphries R L[M]. Current diagnosis & treatment: emergency medicine, 836(2008).

    [31] Zhang H, Meng Y Y, Zhang X Y et al. Mice scald model investigated by OCT combined with reflection spectrum[J]. Spectroscopy and Spectral Analysis, 31, 960-965(2011).

    [32] Jacques S L. Optical properties of biological tissues: a review[J]. Physics in Medicine and Biology, 58, R37-R61(2013).

    [33] Kistler D, Hafemann B, Schmidt K. A model to reproduce predictable full-thickness burns in an experimental animal[J]. Burns, 14, 297-302(1988).

    [34] Yang J, Liu X J. Preparation and observation of scalded wound model in rats[J]. Shaanxi Medical Journal, 38, 794-795(2009).

    Xiaoxue Zhong, Guowu Huang, Hongbo Miu, Chenghao Hu, Wei Liu, Chunrong Sun, Zhihua Chen, Gangning Li, Zili Cao, Xin Jin, Weihao Lin. Noninvasive Quantitative Assessment of Burn Degree Based on Spatial Frequency-Domain Imaging[J]. Chinese Journal of Lasers, 2022, 49(24): 2407205
    Download Citation