• Chinese Optics Letters
  • Vol. 20, Issue 11, 113601 (2022)
Miao Zhao1、2, Fengming Liu3, Yang Yu3, Xinjun Guo1, Hao Ruan1、*, and Jing Wen4
Author Affiliations
  • 1Laboratory of Micro-Nano Optoelectronic Materials and Devices, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3National Center for Protein Science Shanghai, Shanghai 200120, China
  • 4Engineering Research Center of Optical Instrument and Systems, Ministry of Education and Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3788/COL202220.113601 Cite this Article Set citation alerts
    Miao Zhao, Fengming Liu, Yang Yu, Xinjun Guo, Hao Ruan, Jing Wen. Fast dual-beam alignment method for stimulated emission depletion microscopy using aggregation-induced emission dye resin[J]. Chinese Optics Letters, 2022, 20(11): 113601 Copy Citation Text show less
    References

    [1] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett, 19, 780(1994).

    [2] T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. U.S.A., 97, 8206(2000).

    [3] V. Westphal, S. W. Hell. Nanoscale resolution in the focal plane of an optical microscope. Phys. Rev. Lett., 94, 143903(2005).

    [4] G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, S. W. Hell. Macromolecular-scale resolution in biological fluorescence microscopy. Proc. Natl. Acad. Sci. U.S.A., 103, 11440(2006).

    [5] S. W. Hell. Far-field optical nanoscopy. Science, 316, 1153(2007).

    [6] B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, S. W. Hell. Resolution scaling in STED microscopy. Opt. Express, 16, 4154(2008).

    [7] D. Wildanger, E. Rittweger, L. Kastrup, S. W. Hell. STED microscopy with a supercontinuum laser source. Opt. Express, 16, 9614(2008).

    [8] D. Wildanger, R. Medda, L. Kastrup, S. W. Hell. A compact STED microscope providing 3D nanoscale resolution. J. Microsc., 236, 35(2009).

    [9] J. Fischer, M. Wegener. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev., 7, 22(2013).

    [10] J. Fischer, M. Wegener. Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography. Adv. Mater., 24, OP65(2012).

    [11] T. J. A. Wolf, J. Fischer, M. Wegener, A.-N. Unterreiner. Pump-probe spectroscopy on photoinitiators for stimulated-emission-depletion optical lithography. Opt. Lett., 36, 3188(2011).

    [12] Z. Gan, Y. Cao, R. A. Evans, M. Gu. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun., 4, 2061(2013).

    [13] T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N. T. Urban, F. Lavoie-Cardinal, K. I. Willig, C. Eggeling, S. Jakobs, S. W. Hell. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature, 478, 204(2011).

    [14] X. Li, Y. Cao, N. Tian, L. Fu, M. Gu. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate. Optica, 2, 567(2015).

    [15] S. Lamon, Y. Wu, Q. Zhang, X. Liu, M. Gu. Nanoscale optical writing through upconversion resonance energy transfer. Sci. Adv., 7, eabe2209(2021).

    [16] J. B. Ding, K. T. Takasaki, B. L. Sabatini. Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron, 63, 429(2009).

    [17] N. T. Urban, K. I. Willig, S. W. Hell, U. V. Nägerl. STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys. J., 101, 1277(2011).

    [18] B. R. Rankin, G. Moneron, C. A. Wurm, J. C. Nelson, A. Walter, D. Schwarzer, J. Schroeder, D. A. Colón-Ramos, S. W. Hell. Nanoscopy in a living multicellular organism expressing GFP. Biophys. J., 100, L63(2011).

    [19] S. Berning, K. I. Willig, H. Steffens, P. Dibaj, S. W. Hell. Nanoscopy in a living mouse brain. Science, 335, 551(2012).

    [20] T. J. Gould, D. Burke, J. Bewersdorf, M. J. Booth. Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt. Express, 20, 20998(2012).

    [21] Y. Wang, C. Kuang, S. Li, X. Hao, Y. Xu, X. Liu. A 3D aligning method for stimulated emission depletion microscopy using fluorescence lifetime distribution. Microsc. Res. Tech., 77, 935(2014).

    [22] D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, L. Kastrup. A STED microscope aligned by design. Opt. Express, 17, 16100(2009).

    [23] X. Yuan, M. Zhao, Z. Gan, H. Ruan. Fluorescence method of two beams 3D superposition based on confocal technology. Optik, 205, 163425(2020).

    [24] J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, B. Z. Tang, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun., 18, 1740(2001).

    [25] Y. Du, H. Liu. Silsesquioxane-based hexaphenylsilole-linked hybrid porous polymer as an effective fluorescent chemosensor for metal ions. ChemistrySelect, 3, 1667(2018).

    [26] R. Hu, N. Leung, B. Tang. AIE macromolecules: syntheses, structures and functionalities. Chem. Soc. Rev., 43, 4494(2014).

    [27] J. He, B. Xu, F. Chen, H. Xia, K. Li, L. Ye, W. Tian. Aggregation-induced emission in the crystals of 9,10-distyrylanthracene derivatives: the essential role of restricted intramolecular torsion. J. Phys. Chem. C, 113, 9892(2009).

    [28] D. Wang, H. Su, R. T. K. Kwok, X. Hu, H. Zou, Q. Luo, M. M. S. Lee, W. Xu, J. W. Y. Lam, B. Z. Tang. Rational design of a water-soluble NIR AIEgen, and its applications for ultrafast wash-free cellular imaging and photodynamic cancer cell ablation. Chem. Sci., 9, 3685(2018).

    Miao Zhao, Fengming Liu, Yang Yu, Xinjun Guo, Hao Ruan, Jing Wen. Fast dual-beam alignment method for stimulated emission depletion microscopy using aggregation-induced emission dye resin[J]. Chinese Optics Letters, 2022, 20(11): 113601
    Download Citation