• Chinese Optics Letters
  • Vol. 19, Issue 4, 041301 (2021)
Feng Qiu1、2、* and Yu Han3
Author Affiliations
  • 1Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
  • 2Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
  • 3Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
  • show less
    DOI: 10.3788/COL202119.041301 Cite this Article Set citation alerts
    Feng Qiu, Yu Han. Electro-optic polymer ring resonator modulators [Invited][J]. Chinese Optics Letters, 2021, 19(4): 041301 Copy Citation Text show less
    References

    [1] R. Waterhouse, D. Novack. Realizing 5G: microwave photonics for 5G mobile wireless systems. IEEE Microwave Mag., 16, 84(2015).

    [2] DOCOMO 5G white paper 5G radio access: requirements, concept and technologies(2014).

    [3] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436(2015).

    [4] Q. Zhang, H. Yu, M. Barbiero, B. Wang, M. Gu. Artificial neural networks enabled by nanophotonics. Light Sci. Appl., 8, 42(2019).

    [5] I. Lyubomirsky, W. A. Ling. Advanced modulation for datacenter interconnect. Optical Fiber Communication Conference, W4J.3(2016).

    [6] W. Mellette, P. George. Toward optical switching in the data center. 19th International Conference on High Performance Switching and Routing(2018).

    [7] M. Imran, S. Haleem. Optical interconnects for cloud computing data centers: recent advances and future challenges. International Symposium on Grids and Clouds, 1(2018).

    [8] K. Christoforos, I. Tomkos. A survey on optical interconnects for data centers. EE Commun. Surv. Tutorials, 14, 1021(2012).

    [9] F. Qiu, H. Miura, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, S. Yokoyama. An electro-optic polymer-cladded TiO2 waveguide modulator. Appl. Phys. Lett., 109, 173301(2016).

    [10] R. Song, A. Yick, W. H. Steier. Conductivity-dependency-free in-plane poling for Mach–Zehnder modulator with highly conductive electro-optic polymer. Appl. Phys. Lett., 90, 191103(2007).

    [11] F. Qiu, A. M. Spring, F. Yu, A. I. Aoki, A. Otomo, S. Yokoyama. Electro-optic polymer/titanium dioxide hybrid core ring resonator modulators. Laser Photon. Rev., 7, L84(2013).

    [12] B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, H. R. Fetterman. Electrooptic polymer ring resonator modulation up to 165 GHz. IEEE J. Sel. Top. Quantum Electron., 13, 104(2007).

    [13] T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horiskawa, T. Usuki. 50-Gb/s ring-resonator-based silicon modulator. Opt. Express, 21, 11869(2013).

    [14] A. Rao, S. Fathpour. Compact lithium niobate electrooptic modulators. IEEE J. Sel. Top. Quantum Electron., 24, 3400114(2018).

    [15] G. T. Reed, G. Mashanovich, F. T. Gardes, D. J. Thomson. Silicon optical modulators. Nat. Photon., 4, 518(2010).

    [16] W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koo, J. Leuthold, L. R. Dalton. Silicon-organic and plasmonic-orgainic hybrid photonics. ACS Photon., 4, 1576(2017).

    [17] S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, C. Koos. Femtojoule electro-optic modulation using a silicon-organic hybrid device. Light Sci. Appl., 4, e255(2015).

    [18] M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee. Broadband modulation of light by using an electro-optic polymer. Science, 298, 1401(2002).

    [19] A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, J. Leuthold. High-speed plasmonic phase modulators. Nat. Photon., 8, 229(2014).

    [20] F. Qiu, A. M. Spring, J. Hong, H. Miura, T. Kashino, T. Kikuchi, M. Ozawa, H. Nawata, K. Odoi, S. Yokoyama. Electro-optic polymer ring resonator modulator on a flat silicon-on-insulator. Laser Photon. Rev., 11, 1700061(2017).

    [21] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine. Microring resonator channel dropping filters. J. Lightwave Technol., 15, 998(1997).

    [22] H. Tazawa, Y.-H. Kuo, I. Dunayevskiy, J. Luo, A. K.-Y. Jen, H. R. Fetterman, W. H. Steier. Ring resonator-based electrooptic polymer traveling-wave modulator. J. Lightwave Technol., 24, 3514(2006).

    [23] B. J. Seo, S. Kim, H. Fetterman, W. Steier, D. Jin, R. Dinu. Design of ring resonators using electro-optic polymer waveguides. J. Phys. Chem., C112, 7953(2008).

    [24] C. Zhang, L. R. Dalton, P. Rabiei, W. H. Steier. Polymer micro-ring filters and modulators. J. Lightwave Technol., 20, 1968(2002).

    [25] F. Qiu, S. Yokoyama. Efficiently poled electro-optic polymer modulators. Opt. Express, 24, 19020(2016).

    [26] F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, S. Yokoyama. TiO2 ring-resonator-based EO polymer modulator. Opt. Express, 22, 14101(2014).

    [27] M. Streshinsky, A. Ayazi, Z. Xuan, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, M. Hochberg. Highly linear silicon traveling wave Mach–Zehnder carrier depletion modulator based on differential drive. Opt. Express, 21, 3818(2013).

    [28] D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed. 50-Gb/s silicon optical modulator. IEEE Photon. Technol. Lett., 24, 234(2012).

    [29] G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, S. S. Hsu. Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics, 3, 229(2014).

    [30] D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, D. V. Plant. Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator. Opt. Express, 23, 14263(2015).

    [31] A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, D. V. Plant. A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system. IEEE Photon. J., 7, 7901413(2015).

    [32] J. Fujikata, M. Takahashi, S. Takahashi, T. Horikawa, T. Nakamura. High-speed and high-efficiency Si optical modulator with MOS junction, using solid-phase crystallization of polycrystalline silicon. Jpn. J. Appl. Phys., 55, 042202(2016).

    [33] J. Takayesu, M. Hochberg, T. Baehr-Jones, E. Chan, G. Wang, P. Sullivan, Y. Liao, J. Davies, L. Dalton, A. Scherer, W. Krug. A hybrid electrooptic microring resonator-based 1×4×1 ROADM for wafer scale optical interconnects. J. Lightwave Technol., 27, 440(2009).

    [34] T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, A. Scherer. Optical modulation and detection in slotted silicon waveguides. Opt. Express, 13, 5216(2005).

    [35] M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, M. Hochberg. Silicon-polymer hybrid slot waveguide ring-resonator modulator. Opt. Express, 19, 3952(2011).

    [36] V. R. Almeida, Q. F. Xu, C. A. Barrios, M. Lipson. Guiding and confining light in void nanostructure. Opt. Lett., 29, 1209(2004).

    [37] C. Kieninger, Y. Kutuvantavida, H. Miura, J. N. Kemal, H. Zwickel, F. Qiu, M. Lauermann, W. Freude, S. Randel, S. Yokoyama, C. Koos. Demonstration of long-term thermally stable silicon-organic hybrid modulators at 85°C. Opt. Express, 26, 27955(2018).

    [38] C. Kieninger, Y. Kutuvantavida, D. L. Elder, S. Wolf, H. Zwickel, M. Blaicher, J. N. Kemal, M. Lauermann, S. Randel, W. Freude, L. R. Dalton, C. Koos. Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator. Optica, 5, 739(2018).

    [39] F. Qiu, A. M. Spring, J. Hong, S. Yokoyama. Plate-slot polymer waveguide modulator on silicon-on-insulator. Opt. Express, 26, 11213(2018).

    [40] F. Qiu, A. M. Spring, S. Yokoyama. Athermal and high-Q hybrid TiO2–Si3N4 ring resonator via an etching-free fabrication technique. ACS Photon., 2, 405(2015).

    [41] J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, R. Baets. Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Opt. Express, 17, 14627(2009).

    [42] K. Padmaraju, K. Bergman. Resolving the thermal challenges for silicon microring resonator devices. Nanophotonics., 2, 1(2013).

    [43] F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, S. Yokoyama. Athermal hybrid silicon/polymer ring resonator electro-optic modulator. ACS Photon., 3, 780(2016).

    [44] B. A. Block, T. R. Younkin, P. S. Davids, M. R. Reshotko, P. Chang, B. M. Polishak, S. Huang, J. Luo, A. K. Y. Jen. Electro-optic polymer cladding ring resonator modulators. Opt. Express, 16, 18326(2008).

    Data from CrossRef

    [1] Xinyu Sun, Guolei Liu, Hongyan Yu, Dasai Ban, Niping Deng, Feng Qiu. Design and theoretical characterization of high speed metasurface modulators based on electro-optic polymer. Optics Express, 29, 9207(2021).

    Feng Qiu, Yu Han. Electro-optic polymer ring resonator modulators [Invited][J]. Chinese Optics Letters, 2021, 19(4): 041301
    Download Citation