• Advanced Photonics
  • Vol. 4, Issue 1, 016003 (2022)
Walker Peterson1, Julia Gala de Pablo1, Matthew Lindley1, Kotaro Hiramatsu1、2、3、*, and Keisuke Goda1、4、5、6
Author Affiliations
  • 1The University of Tokyo, School of Science, Department of Chemistry, Tokyo, Japan
  • 2The University of Tokyo, Research Center for Spectrochemistry, Tokyo, Japan
  • 3PRESTO, Japan Science and Technology Agency, Saitama, Japan
  • 4Japan Science and Technology Agency, Tokyo, Japan
  • 5University of California, Los Angeles, Department of Bioengineering, Los Angeles, California, United States
  • 6Wuhan University, Institute of Technological Sciences, Wuhan, China
  • show less
    DOI: 10.1117/1.AP.4.1.016003 Cite this Article Set citation alerts
    Walker Peterson, Julia Gala de Pablo, Matthew Lindley, Kotaro Hiramatsu, Keisuke Goda. Ultrafast impulsive Raman spectroscopy across the terahertz–fingerprint region[J]. Advanced Photonics, 2022, 4(1): 016003 Copy Citation Text show less
    References

    [1] A. Cantarero. Raman scattering applied to materials science. Procedia Mater. Sci., 9, 113-122(2015).

    [2] L. Liang et al. Low-frequency shear and layer-breathing modes in Raman scattering of two-dimensional materials. ACS Nano, 11, 11777-11802(2017).

    [3] A. A. Puretzky et al. Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations. ACS Nano, 9, 6333-6342(2015).

    [4] J.-X. Cheng, X. S. Xie. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science, 350, aaa8870(2015).

    [5] K. S. Lee et al. An automated Raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol., 4, 1035-1048(2019).

    [6] C. H. Camp et al. High-speed coherent Raman fingerprint imaging of biological tissues. Nat. Photonics, 8, 627-634(2014).

    [7] K. Bērziņš, S. J. Fraser-Miller, K. C. Gordon. Recent advances in low-frequency Raman spectroscopy for pharmaceutical applications. Int. J. Pharm., 592, 120034(2021).

    [8] A. Paudel, D. Raijada, J. Rantanen. Raman spectroscopy in pharmaceutical product design. Adv. Drug Del. Rev., 89, 3-20(2015).

    [9] J. Y. Khoo, J. Y. Y. Heng, D. R. Williams. Agglomeration effects on the drying and dehydration stability of pharmaceutical acicular hydrate: carbamazepine dihydrate. Ind. Eng. Chem. Res., 49, 422-427(2010).

    [10] K. J. I. Ember et al. Raman spectroscopy and regenerative medicine: a review. NPJ Regen. Med., 2, 12(2017).

    [11] M. Jermyn et al. Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci. Transl. Med., 7, 274ra19(2015).

    [12] T. Achibat et al. Low-frequency Raman spectroscopy of plastically deformed poly(methyl methacrylate). Polymer, 36, 251-257(1995).

    [13] R. G. Snyder, S. J. Krause, J. R. Scherer. Determination of the distribution of straight-chain segment lengths in crystalline polyethylene from the Raman LAM-1 band. J. Polym. Sci. Polym. Phys. Ed., 16, 1593-1609(1978).

    [14] P. J. Larkin et al. Polymorph characterization of active pharmaceutical ingredients (APIs) using low-frequency Raman spectroscopy. Appl. Spectrosc., 68, 758-776(2014).

    [15] A. Mermet et al. Low frequency Raman scattering study of the nanostructure of plastically deformed polymer glasses. J. Non-Cryst. Solids, 196, 227-232(1996).

    [16] P. Pakhomov et al. Application of the low frequency Raman spectroscopy for studying ultra-high molecular weight polyethylenes. Macromol. Symp., 305, 63-72(2011).

    [17] S. Roy, B. Chamberlin, A. J. Matzger. Polymorph discrimination using low wavenumber Raman spectroscopy. Org. Process Res. Dev., 17, 976-980(2013).

    [18] Y. Yan, E. B. Gamble, K. A. Nelson. Impulsive stimulated scattering: general importance in femtosecond laser pulse interactions with matter, and spectroscopic applications. J. Chem. Phys., 83, 5391-5399(1985).

    [19] S. Ruhman, A. G. Joly, K. A. Nelson. Coherent molecular vibrational motion observed in the time domain through impulsive stimulated Raman scattering. IEEE J. Quantum Electron., 24, 460-469(1988).

    [20] L. Dhar, J. A. Rogers, K. A. Nelson. Time-resolved vibrational spectroscopy in the impulsive limit. Chem. Rev., 94, 157-193(1994).

    [21] M. Liebel et al. Principles and applications of broadband impulsive vibrational spectroscopy. J. Phys. Chem. A, 119, 9506-9517(2015).

    [22] E. P. Ippen, C. V. Shank. Picosecond response of a high-repetition-rate CS2 optical Kerr gate. Appl. Phys. Lett., 26, 92-93(1975).

    [23] Q. Zhong, J. T. Fourkas. Optical Kerr effect spectroscopy of simple liquids. J. Phys. Chem. B, 112, 15529-15539(2008).

    [24] N. A. Smith, S. R. Meech. Optically-heterodyne-detected optical Kerr effect (OHD-OKE): applications in condensed phase dynamics. Int. Rev. Phys. Chem., 21, 75-100(2002).

    [25] D. Heiman et al. Raman-induced Kerr effect. Phys. Rev. Lett., 36, 189-192(1976).

    [26] C. W. Freudiger et al. Optical heterodyne-detected Raman-induced Kerr effect (OHD-RIKE) microscopy. J. Phys. Chem. B, 115, 5574-5581(2011).

    [27] V. Kumar et al. Balanced-detection Raman-induced Kerr-effect spectroscopy. Phys. Rev. A, 7, 053810(2012).

    [28] T. Ideguchi et al. Raman-induced Kerr-effect dual-comb spectroscopy. Opt. Lett., 37, 4498-4500(2012).

    [29] D. Raanan et al. Vibrational spectroscopy via stimulated Raman induced Kerr lensing. APL Photonics, 3, 092501(2018).

    [30] D. R. Smith et al. Phase noise limited frequency shift impulsive Raman spectroscopy. APL Photonics, 6, 026107(2021).

    [31] D. Raanan et al. Sub-second hyper-spectral low-frequency vibrational imaging via impulsive Raman excitation. Opt. Lett., 44, 5153-5156(2019).

    [32] X. Audier, N. Balla, H. Rigneault. Pump-probe micro-spectroscopy by means of an ultra-fast acousto-optics delay line. Opt. Lett., 42, 294-297(2017).

    [33] S. R. Domingue, D. G. Winters, R. A. Bartels. Time-resolved coherent Raman spectroscopy by high-speed pump-probe delay scanning. Opt. Lett., 39, 4124-4127(2014).

    [34] J. P. Ogilvie et al. Fourier-transform coherent anti-Stokes Raman scattering microscopy. Opt. Lett., 31, 480-482(2006).

    [35] M. Cui et al. Interferometric Fourier transform coherent anti-Stokes Raman scattering. Opt. Express, 14, 8448-8458(2006).

    [36] K. Hashimoto et al. Broadband coherent Raman spectroscopy running at 24,000 spectra per second. Sci. Rep., 6, 21036(2016).

    [37] M. Tamamitsu et al. Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line. Vib. Spectrosc., 91, 163-169(2017).

    [38] T. Ideguchi et al. Coherent Raman spectro-imaging with laser frequency combs. Nature, 502, 355-358(2013).

    [39] K. J. Mohler et al. Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency. Opt. Lett., 42, 318-321(2017).

    [40] I. Coddington, N. Newbury, W. Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

    [41] R. Kameyama et al. Dual-comb coherent Raman spectroscopy with near 100% duty cycle. ACS Photonics, 8, 975-981(2021).

    [42] W. Peterson, K. Hiramatsu, K. Goda. Sagnac-enhanced impulsive stimulated Raman scattering for highly sensitive low-frequency Raman spectroscopy. Opt. Lett., 44, 5282-5285(2019).

    [43] J. K. Wahlstrand et al. Impulsive stimulated Raman scattering: comparison between phase-sensitive and spectrally filtered techniques. Opt. Lett., 30, 926-928(2005).

    [44] M. Lindley et al. Highly sensitive Fourier-transform coherent anti-Stokes Raman scattering spectroscopy via genetic algorithm pulse shaping. Opt. Lett., 46, 4320-4323(2021).

    [45] F. Glerean et al. Quantum model for impulsive stimulated Raman scattering. J. Phys. B At. Mol. Opt. Phys., 52, 145502(2019).

    [46] T. Shimanouchi. Tables of Molecular Vibrational Frequencies Consolidated, I(1972).

    [47] J. K. Wilmshurst, H. J. Bernstein. The infrared and Raman spectra of toluene, toluene-α-d3, m-xylene, and m-xylene-αα-d6. Can. J. Chem., 35, 911-925(1957). https://doi.org/10.1139/v57-123

    [48] G. L. Carlson, W. G. Fateley, J. Hiraishi. Vibrational spectra and internal rotation in 1,1,2,2-tetra-bromoethane. J. Mol. Struct., 6, 101-116(1970).

    [49] Y. Jin et al. Raman identification of multiple melting peaks of polyethylene. Macromolecules, 50, 6174-6183(2017).

    [50] R. Boyd. Nonlinear Optics(2008).

    [51] R. A. Bartels, D. Oron, H. Rigneault. Low frequency coherent Raman spectroscopy. J. Phys. Photonics, 3, 042004(2021).

    Walker Peterson, Julia Gala de Pablo, Matthew Lindley, Kotaro Hiramatsu, Keisuke Goda. Ultrafast impulsive Raman spectroscopy across the terahertz–fingerprint region[J]. Advanced Photonics, 2022, 4(1): 016003
    Download Citation