• Photonics Research
  • Vol. 12, Issue 9, 2018 (2024)
Kalipada Chatterjee1, Jan Nedoma2, Venugopal Arumuru3, Subrat Sahu1..., Carlos Marques4,5 and Rajan Jha1,*|Show fewer author(s)
Author Affiliations
  • 1Nanophotonics and Plasmonics Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752050, India
  • 2Department of Telecommunications, VSB–Technical University of Ostrava, Ostrava 70800, Czech Republic
  • 3Applied Fluids Group, School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752050, India
  • 4CICECO & Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal
  • 5Department of Physics, VSB–Technical University of Ostrava, Ostrava 70800, Czech Republic
  • show less
    DOI: 10.1364/PRJ.527410 Cite this Article Set citation alerts
    Kalipada Chatterjee, Jan Nedoma, Venugopal Arumuru, Subrat Sahu, Carlos Marques, Rajan Jha, "Integrated interferometers’ system for in situ real-time optical signal modulation," Photonics Res. 12, 2018 (2024) Copy Citation Text show less
    References

    [1] Z. Liu, J. Kakande, B. Kelly. Modulator-free quadrature amplitude modulation signal synthesis. Nat. Commun., 5, 5911(2014).

    [2] L. Li, P. G. Patki, Y. B. Kwon. All-optical regenerator of multi-channel signals. Nat. Commun., 8, 884(2017).

    [3] A. Xomalis, I. Demirtzioglou, E. Plum. Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. Nat. Commun., 9, 182(2018).

    [4] H. E. Sutherland, R. M. Manuel. Signal conditioning for compensating nonlinearity and nonrepeatability of an optical frequency scanning laser implemented in a C-OFDR system. Appl. Opt., 56, 457-461(2017).

    [5] D. J. Blumenthal, J. E. Bowers, L. Rau. Optical signal processing for optical packet switching networks. IEEE Commun. Mag., 41, S23-S29(2003).

    [6] T. J. Echtermeyer, L. Britnell, P. K. Jasnos. Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun., 2, 458(2011).

    [7] H. Schmeckebier, D. Bimberg. Quantum-Dot Semiconductor Optical Amplifiers for Energy-Efficient Optical Communication, 37-74(2017).

    [8] S. Sahu, K. P. Nayak, K. R. Mangipudi. Slot waveguide enhanced asymmetric photonic crystal nanofiber cavity for fiber-coupled single photons. Appl. Phys. Lett., 124, 034002(2024).

    [9] M. Li, Y. Deng, J. Tang. Reconfigurable optical signal processing based on a distributed feedback semiconductor optical amplifier. Sci. Rep., 6, 19985(2016).

    [10] M. Vlk, A. Datta, S. Alberti. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy. Light Sci. Appl., 10, 26(2021).

    [11] C. Caucheteur, T. Guo, F. Liu. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs. Nat. Commun., 7, 13371(2016).

    [12] J. W. Oh, W. J. Chung, K. Heo. Biomimetic virus-based colourimetric sensors. Nat. Commun., 5, 3043(2014).

    [13] D. M. Chow, Z. Yang, M. A. Soto. Distributed forward Brillouin sensor based on local light phase recovery. Nat. Commun., 9, 2990(2018).

    [14] X. Sun, Z. Yang, X. Hong. Genetic-optimised aperiodic code for distributed optical fibre sensors. Nat. Commun., 11, 5774(2020).

    [15] P. Zhao, Y. Zhao, H. Bao. Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber. Nat. Commun., 11, 847(2020).

    [16] A. Sladen, D. Rivet, J. P. Ampuero. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nat. Commun., 10, 5777(2019).

    [17] E. F. Williams, M. R. Fernández-Ruiz, R. Magalhaes. Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nat. Commun., 10, 5778(2019).

    [18] R. F. Wolffenbuttel. State-of-the-art in integrated optical microspectrometers. IEEE Trans. Instrum. Meas., 53, 197-202(2004).

    [19] Y. Chen, H. Liu, M. Reilly. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials. Nat. Commun., 5, 5247(2014).

    [20] M. A. Soto, J. A. Ramírez, L. Thévenaz. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration. Nat. Commun., 7, 10870(2016).

    [21] Y. Liao, E. Austin, P. J. Nash. Highly scalable amplified hybrid TDM/DWDM array architecture for interferometric fiber-optic sensor systems. J. Lightwave Technol., 31, 882-888(2013).

    [22] H. C. Gomes, X. Liu, A. Fernandes. Laser-Induced graphene-based Fabry-Pérot cavity label-free immunosensors for the quantification of cortisol. Sens. Actuators Rep., 7, 100186(2024).

    [23] F. Karim, Y. Zhu, M. Han. Modified phase-generated carrier demodulation of fiber-optic interferometric ultrasound sensors. Opt. Express, 29, 25011-25021(2021).

    [24] M. Y. Plotnikov, A. V. Volkov. Adaptive phase noise cancellation technique for fiber-optic interferometric sensors. J. Lightwave Technol., 39, 4853-4860(2021).

    [25] S. Dass, K. Chatterjee, S. Kachhap. In reflection metal-coated diaphragm microphone using PCF modal interferometer. J. Lightwave Technol., 39, 3974-3980(2021).

    [26] G. A. Cárdenas-Sevilla, V. Finazzi, J. Villatoro. Photonic crystal fiber sensor array based on modes overlapping. Opt. Express, 19, 7596-7602(2011).

    [27] K. Chatterjee, V. Arumuru, D. Patil. Multipoint monitoring of amplitude, frequency, and phase of vibrations using concatenated modal interferometers. Sci. Rep., 12, 3798(2022).

    [28] Z. He, Y. Zhu, J. Kaňka. Core-cladding mode coupling and recoupling in photonic crystal fiber for enhanced overlap of evanescent field using long-period gratings. Opt. Express, 18, 507-512(2010).

    [29] H. Jeong, K. Oh. Theoretical analysis of cladding-mode waveguide dispersion and its effects on the spectra of long-period fiber grating. J. Lightwave Technol., 21, 1838-1845(2003).

    [30] D. Barrera, J. Villatoro, V. P. Finazzi. Low-loss photonic crystal fiber interferometers for sensor networks. J. Lightwave Technol., 28, 3542-3547(2010).

    [31] J. Chen, P. Mikulic, T. A. Eftimov. An inline core-cladding intermodal interferometer using a photonic crystal fiber. J. Lightwave Technol., 27, 3933-3939(2009).

    [32] J. Villatoro, V. Finazzi, V. P. Minkovich. Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing. Appl. Phys. Lett., 91, 091109(2007).

    [33] M. Nankali, Z. Einalou, M. Asadnia. High-sensitivity 3D ZIF-8/PDA photonic crystal-based biosensor for blood component recognition. ACS Appl. Bio Mater., 4, 1958-1968(2021).

    [34] L. Teng, H. Zhang, Y. Dong. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings. Opt. Lett., 41, 4413-4416(2016).

    [35] R. Jha, J. Villatoro, G. Badenes. Refractometry based on a photonic crystal fiber interferometer. Opt. Lett., 34, 617-619(2009).

    [36] Z. Wang, Z. Chen, L. Ma. Optical microfiber intelligent sensor: wearable cardiorespiratory and behavior monitoring with a flexible wave-shaped polymer optical microfiber. ACS Appl. Mater. Interfaces, 16, 8333-8345(2024).

    [37] H. Yu, Z. Luo, Y. Zheng. Vibration sensing using liquid-filled photonic crystal fiber with a central air-bore. J. Lightwave Technol., 37, 4625-4633(2019).

    [38] V. Arumuru, J. N. Dash, D. Dora. Vortex shedding optical flowmeter based on photonic crystal fiber. Sci. Rep., 9, 8313(2019).

    [39] Q. Zhang, R. Zhai, S. Yang. Microfiber mechanical resonator for optomechanics. ACS Photon., 7, 695-700(2020).

    Kalipada Chatterjee, Jan Nedoma, Venugopal Arumuru, Subrat Sahu, Carlos Marques, Rajan Jha, "Integrated interferometers’ system for in situ real-time optical signal modulation," Photonics Res. 12, 2018 (2024)
    Download Citation