• Laser & Optoelectronics Progress
  • Vol. 59, Issue 2, 0200001 (2022)
Mingjie Sun*, Songming Yan, and Siyuan Wang
Author Affiliations
  • School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China
  • show less
    DOI: 10.3788/LOP202259.0200001 Cite this Article Set citation alerts
    Mingjie Sun, Songming Yan, Siyuan Wang. Reconstruction Algorithms for Ghost Imaging and Single-Pixel Imaging[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0200001 Copy Citation Text show less
    References

    [1] Shao X P, Su Y, Liu J P et al. Connotation and system of computational imaging(invited)[J]. Acta Photonica Sinica, 50, 0511001(2021).

    [2] Shao X P, Liu F, Li W et al. Latest progress in computational imaging technology and application[J]. Laser & Optoelectronics Progress, 57, 020001(2020).

    [3] Zuo C, Feng S J, Zhang X Y et al. Deep learning based computational imaging: status, challenges, and future[J]. Acta Optica Sinica, 40, 0111003(2020).

    [4] Klyshko D N. A simple method of preparing pure states of an optical field, of implementing the Einstein-Podolsky-Rosen experiment, and of demonstrating the complementarity principle[J]. Soviet Physics Uspekhi, 31, 74-85(1988).

    [5] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429-R3432(1995).

    [6] Scarcelli G, Berardi V, Shih Y. Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?[J]. Physical Review Letters, 96, 063602(2006).

    [7] Shih Y. Quantum imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 1016-1030(2007).

    [8] Bennink R S, Bentley S J, Boyd R W. “two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002).

    [9] Gatti A, Brambilla E, Bache M et al. Correlated imaging, quantum and classical[J]. Physical Review A, 70, 013802(2004).

    [10] Valencia A, Scarcelli G, D'Angelo M et al. Two-photon imaging with thermal light[J]. Physical Review Letters, 94, 063601(2005).

    [11] Zhai Y H, Chen X H, Zhang D et al. Two-photon interference with true thermal light[J]. Physical Review A, 72, 043805(2005).

    [12] Gatti A, Bondani M, Lugiato L A et al. Comment on “can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?”[J]. Physical Review Letters, 98, 039301(2007).

    [13] Shih Y. The physics of ghost imaging[M]. Cohen L, Poor H V, Scully M O. Classical, semi-classical and quantum noise, 169-222(2011).

    [14] Shapiro J H, Boyd R W. The physics of ghost imaging[J]. Quantum Information Processing, 11, 949-993(2012).

    [15] Shih Y. The physics of ghost imaging: nonlocal interference or local intensity fluctuation correlation?[J]. Quantum Information Processing, 11, 995-1001(2012).

    [16] Shapiro J H, Boyd R W. Response to “The physics of ghost imaging: nonlocal interference or local intensity fluctuation correlation?”[J]. Quantum Information Processing, 11, 1003-1011(2012).

    [17] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [18] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 79, 053840(2009).

    [19] Candes E J, Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 51, 4203-4215(2005).

    [20] Candès E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 59, 1207-1223(2006).

    [21] Candès E J. Compressive sampling[C], 1433-1452(2006).

    [22] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).

    [23] Candes E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Transactions on Information Theory, 52, 5406-5425(2006).

    [24] Candès E J, Romberg J. Sparsity and incoherence in compressive sampling[J]. Inverse Problems, 23, 969-985(2007).

    [25] Duarte M F, Davenport M A, Takhar D et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008).

    [26] Guarnieri, M. The Television: from mechanics to electronics[J]. IEEE Industrial Electronics Magazine, 4, 43-45(2010).

    [27] Baird J L. Apparatus for transmitting views or images to a distance[P].

    [28] Cheng J, Han S S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 92, 093903(2004).

    [29] Greenberg J, Krishnamurthy K, Brady D. Compressive single-pixel snapshot X-ray diffraction imaging[J]. Optics Letters, 39, 111-114(2014).

    [30] Zhang A X, He Y H, Wu L A et al. Tabletop X-ray ghost imaging with ultra-low radiation[J]. Optica, 5, 374-377(2018).

    [31] Bondani M, Puddu E, Degiovanni I P et al. Chaotically seeded parametric downconversion for ghost imaging[J]. Journal of the Optical Society of America B, 25, 1203-1213(2008).

    [32] Radwell N, Mitchell K J, Gibson G M et al. Single-pixel infrared and visible microscope[J]. Optica, 1, 285-289(2014).

    [33] Edgar M P, Gibson G M, Bowman R W et al. Simultaneous real-time visible and infrared video with single-pixel detectors[J]. Scientific Reports, 5, 10669(2015).

    [34] Watts C M, Shrekenhamer D, Montoya J et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 8, 605-609(2014).

    [35] Stantchev R I, Sun B, Hornett S M et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2, e1600190(2016).

    [36] Zhao C Q, Gong W L, Chen M L et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 101, 141123(2012).

    [37] Howland G A, Lum D J, Ware M R et al. Photon counting compressive depth mapping[J]. Optics Express, 21, 23822-23837(2013).

    [38] Sun M J, Edgar M P, Gibson G M et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 7, 12010(2016).

    [39] Aβmann M, Bayer M. Compressive adaptive computational ghost imaging[J]. Scientific Reports, 3, 1545(2013).

    [40] Phillips D B, Sun M J, Taylor J M et al. Adaptive foveated single-pixel imaging with dynamic supersampling[J]. Science Advances, 3, e1601782(2017).

    [41] Bennink R S, Bentley S J, Boyd R W et al. Quantum and classical coincidence imaging[J]. Physical Review Letters, 92, 033601(2004).

    [42] Zhang D, Zhai Y H, Wu L A et al. Correlated two-photon imaging with true thermal light[J]. Optics Letters, 30, 2354-2356(2005).

    [43] Wu Z W, Qiu X D, Chen L X. Current status and prospect for correlated imaging technique[J]. Laser & Optoelectronics Progress, 57, 060001(2020).

    [44] Sun B, Edgar M P, Bowman R et al. Differential computational ghost imaging[C], CTu1C.4(2013).

    [45] Sun M J, Xu Z H, Wu L G. Collective noise model for focal plane modulated single-pixel imaging[J]. Optics and Lasers in Engineering, 100, 18-22(2018).

    [46] McCarthy A, Collins R J, Krichel N J et al. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting[J]. Applied Optics, 48, 6241-6251(2009).

    [47] Massa J S, Wallace A M, Buller G S et al. Laser depth measurement based on time-correlated single-photon counting[J]. Optics Letters, 22, 543-545(1997).

    [48] McCarthy A, Krichel N J, Gemmell N R et al. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection[J]. Optics Express, 21, 8904-8915(2013).

    [49] Nyquist H. Certain topics in telegraph transmission theory[J]. Transactions of the American Institute of Electrical Engineers, 47, 617-644(1928).

    [50] Shannon C E. Communication in the presence of noise[J]. Proceedings of the IRE, 37, 10-21(1949).

    [51] Ahmed N, Natarajan T, Rao K R. Discrete cosine transform[J]. IEEE Transactions on Computers, C-23, 90-93(1974).

    [52] Antonini M, Barlaud M, Mathieu P et al. Image coding using wavelet transform[J]. IEEE Transactions on Image Processing, 1, 205-220(1992).

    [53] Wallace G K. The JPEG still picture compression standard[J]. IEEE Transactions on Consumer Electronics, 38, 4180430(1992).

    [54] Skodras A, Christopoulos C, Ebrahimi T. The JPEG 2000 still image compression standard[J]. IEEE Signal Processing Magazine, 18, 36-58(2001).

    [55] Sankaranarayanan A C, Xu L N, Studer C et al. Video compressive sensing for spatial multiplexing cameras using motion-flow models[J]. SIAM Journal on Imaging Sciences, 8, 1489-1518(2015).

    [56] Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 13, 13-20(2019).

    [57] Li C B, Yin W T, Jiang H et al. An efficient augmented Lagrangian method with applications to total variation minimization[J]. Computational Optimization and Applications, 56, 507-530(2013).

    [58] Davenport M A, Wakin M B. Analysis of orthogonal matching pursuit using the restricted isometry property[J]. IEEE Transactions on Information Theory, 56, 4395-4401(2010).

    [59] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 53, 4655-4666(2007).

    [60] Needell D, Vershynin R. Greedy signal recovery and uncertainty principles[J]. Proceedings of SPIE, 6814, 139-150(2008).

    [61] Needell D, Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 26, 301-321(2009).

    [62] Chen S S B, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 43, 129-159(2001).

    [63] Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 1, 586-597(2007).

    [64] Kim S J, Koh K, Lustig M et al. An interior-point method for large-scale ℓ1-regularized least squares[J]. IEEE Journal of Selected Topics in Signal Processing, 1, 606-617(2007).

    [65] Donoho D L, Tsaig Y. Fast solution of ℓ1-norm minimization problems when the solution may be sparse[J]. IEEE Transactions on Information Theory, 54, 4789-4812(2008).

    [66] Bioucas-Dias J M, Figueiredo M A T. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 16, 2992-3004(2007).

    [67] Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 52, 489-509(2006).

    [68] Bioucas-Dias J M, Figueiredo M A T. Two-step algorithms for linear inverse problems with non-quadratic regularization[C], I-105-I(2007).

    [69] Becker S, Bobin J, Candès E J. NESTA: a fast and accurate first-order method for sparse recovery[J]. SIAM Journal on Imaging Sciences, 4, 1-39(2011).

    [70] Yuan X. Generalized alternating projection based total variation minimization for compressive sensing[C], 2539-2543(2016).

    [71] Wahlberg B, Boyd S, Annergren M et al. An ADMM algorithm for a class of total variation regularized estimation problems[J]. IFAC Proceedings Volumes, 45, 83-88(2012).

    [72] Candès E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 346, 589-592(2008).

    [73] Baraniuk R, Davenport M, DeVore R et al. A simple proof of the restricted isometry property for random matrices[J]. Constructive Approximation, 28, 253-263(2008).

    [74] Chen X H, Liu Q, Luo K H et al. Lensless ghost imaging with true thermal light[J]. Optics Letters, 34, 695-697(2009).

    [75] Sun M J, Zhang J M. Single-pixel imaging and its application in three-dimensional reconstruction: a brief review[J]. Sensors, 19, 732(2019).

    [76] Pastuszczak A, Szczygieł B, Mikołajczyk M et al. Efficient adaptation of complex-valued noiselet sensing matrices for compressed single-pixel imaging[J]. Applied Optics, 55, 5141-5148(2016).

    [77] Czajkowski K M, Czajkowski K M, Pastuszczak A et al. Single-pixel imaging with Morlet wavelet correlated random patterns[J]. Scientific Reports, 8, 466(2018).

    [78] Wang L, Zhao S M. Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform[J]. Photonics Research, 4, 240-244(2016).

    [79] Zhang Z B, Wang X Y, Zheng G et al. Hadamard single-pixel imaging versus Fourier single-pixel imaging[J]. Optics Express, 25, 19619-19639(2017).

    [80] Zhang Z, Ma X, Zhong J. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 6, 6225(2015).

    [81] Zhang Z B, Liu S J, Peng J Z et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements[J]. Optica, 5, 315-319(2018).

    [82] Czajkowski K M, Czajkowski K M, Pastuszczak A et al. Real-time single-pixel video imaging with Fourier domain regularization[J]. Optics Express, 26, 20009-20022(2018).

    [83] Zhang Z B, Wang X Y, Zheng G A et al. Fast Fourier single-pixel imaging via binary illumination[J]. Scientific Reports, 7, 12029(2017).

    [84] Yu W K, Li M F, Yao X R et al. Adaptive compressive ghost imaging based on wavelet trees and sparse representation[J]. Optics Express, 22, 7133-7144(2014).

    [85] Rousset F, Ducros N, Farina A et al. Adaptive basis scan by wavelet prediction for single-pixel imaging[J]. IEEE Transactions on Computational Imaging, 3, 36-46(2017).

    [86] Zhao H X, Guo Y, Li P M et al. Investigation of single-pixel imaging in signal-to-noise ratio and its development at special wavelength[J]. Laser & Optoelectronics Progress, 58, 1011010(2021).

    [87] Yan S M, Sun M J, Chen W et al. Illumination calibration for computational ghost imaging[J]. Photonics, 8, 59(2021).

    [88] Sun M J, Meng L T, Edgar M P et al. A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging[J]. Scientific Reports, 7, 3464(2017).

    [89] Yu W K. Super sub-nyquist single-pixel imaging by means of cake-cutting Hadamard basis sort[J]. Sensors, 19, 4122(2019).

    [90] Yu W K, Liu Y M. Single-pixel imaging with origami pattern construction[J]. Sensors, 19, 5135(2019).

    [91] Yu X, Stantchev R I, Yang F et al. Super sub-Nyquist single-pixel imaging by total variation ascending ordering of the Hadamard basis[J]. Scientific Reports, 10, 9338(2020).

    [92] Yu X, Yang F, Gao B et al. Deep compressive single pixel imaging by reordering Hadamard basis: a comparative study[J]. IEEE Access, 8, 55773-55784(2020).

    [93] Li L J, Chen W, Zhao X Y et al. Fast optical phased array calibration technique for random phase modulation LiDAR[J]. IEEE Photonics Journal, 11, 1-10(2019).

    [94] Xu Z H, Chen W, Penuelas J et al. 1000 fps computational ghost imaging using LED-based structured illumination[J]. Optics Express, 26, 2427-2434(2018).

    [95] Jiao S M, Sun M J, Gao Y et al. Motion estimation and quality enhancement for a single image in dynamic single-pixel imaging[J]. Optics Express, 27, 12841-12854(2019).

    [96] Liu W T, Sun S, Hu H K et al. Progress and prospect for ghost imaging of moving objects[J]. Laser & Optoelectronics Progress, 58, 1011001(2021).

    [97] Sun M J, Edgar M P, Phillips D B et al. Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning[J]. Optics Express, 24, 10476-10485(2016).

    [98] Sun M J, Wang H Y, Huang J Y. Improving the performance of computational ghost imaging by using a quadrant detector and digital micro-scanning[J]. Scientific Reports, 9, 4105(2019).

    [99] Jordan M I, Mitchell T M. Machine learning: trends, perspectives, and prospects[J]. Science, 349, 255-260(2015).

    [100] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).

    [101] Schmidhuber J. Deep learning in neural networks: an overview[J]. Neural Networks, 61, 85-117(2015).

    [102] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 18, 1527-1554(2006).

    [103] Bottou L. Large-scale machine learning with stochastic gradient descent[M]. Lechevallier Y, Saporta G. Proceedings of COMPSTAT’2010, 177-186(2010).

    [104] Nair V, Hinton G E. Rectified linear units improve restricted Boltzmann machines[C], 807-814(2010).

    [105] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[C], 315-323(2011).

    [106] Gibson G M, Johnson S D, Padgett M J. Single-pixel imaging 12 years on: a review[J]. Optics Express, 28, 28190-28208(2020).

    [107] Srivastava N, Hinton G, Krizhevsky A et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 15, 1929-1958(2014).

    [108] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [109] He Y, Wang G, Dong G et al. Ghost imaging based on deep learning[J]. Scientific Reports, 8, 6469(2018).

    [110] Lyu M, Wang W, Wang H et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 7, 17865(2017).

    [111] Shimobaba T, Endo Y, Nishitsuji T et al. Computational ghost imaging using deep learning[J]. Optics Communications, 413, 147-151(2018).

    [112] Wang F, Wang H, Wang H et al. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging[J]. Optics Express, 27, 25560-25572(2019).

    [113] Higham C F, Murray-Smith R, Padgett M J et al. Deep learning for real-time single-pixel video[J]. Scientific Reports, 8, 2369(2018).

    [114] Radwell N, Johnson S D, Edgar M P et al. Deep learning optimized single-pixel LiDAR[J]. Applied Physics Letters, 115, 231101(2019).

    [115] Wang H, Bian L, Zhang J. Depth acquisition in single-pixel imaging with multiplexed illumination[J]. Optics Express, 29, 4866-4874(2021).

    [116] Zhang Z B, Li X, Zheng S J et al. Image-free classification of fast-moving objects using “learned” structured illumination and single-pixel detection[J]. Optics Express, 28, 13269(2020).

    [117] Jiao S M, Feng J, Gao Y et al. Optical machine learning with incoherent light and a single-pixel detector[J]. Optics Letters, 44, 5186-5189(2019).

    Mingjie Sun, Songming Yan, Siyuan Wang. Reconstruction Algorithms for Ghost Imaging and Single-Pixel Imaging[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0200001
    Download Citation