• Advanced Photonics
  • Vol. 3, Issue 4, 045003 (2021)
Jiawei Yan1、2, Nanshun Huang1、2, Haixiao Deng3、*, Bo Liu3, Dong Wang3, and Zhentang Zhao3、*
Author Affiliations
  • 1Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai, China
  • 2University of Chinese Academy of Sciences, Beijing, China
  • 3Chinese Academy of Sciences, Shanghai Advanced Research Institute, Shanghai, China
  • show less
    DOI: 10.1117/1.AP.3.4.045003 Cite this Article Set citation alerts
    Jiawei Yan, Nanshun Huang, Haixiao Deng, Bo Liu, Dong Wang, Zhentang Zhao. First observation of laser–beam interaction in a dipole magnet[J]. Advanced Photonics, 2021, 3(4): 045003 Copy Citation Text show less
    References

    [1] C. Pellegrini, A. Marinelli, S. Reiche. The physics of x-ray free-electron lasers. Rev. Mod. Phys., 88, 015006(2016).

    [2] N. Huang et al. Features and futures of x-ray free-electron lasers. The Innovation, 2, 100097(2021).

    [3] P. Emma et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics, 4, 641-647(2010).

    [4] T. Ishikawa et al. A compact x-ray free-electron laser emitting in the sub-ångström region. Nat. Photonics, 6, 540-544(2012).

    [5] W. Decking et al. A MHz-repetition-rate hard x-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photonics, 14, 391-397(2020).

    [6] H.-S. Kang et al. Hard x-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photonics, 11, 708-713(2017).

    [7] E. Prat et al. A compact and cost-effective hard x-ray free-electron laser driven by a high-brightness and low-energy electron beam. Nat. Photonics, 14, 748-754(2020).

    [8] E. Hemsing et al. Beam by design: laser manipulation of electrons in modern accelerators. Rev. Mod. Phys., 86, 897-941(2014).

    [9] L. H. Yu. Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers. Phys. Rev. A, 44, 5178-5193(1991).

    [10] G. Stupakov. Using the beam-echo effect for generation of short-wavelength radiation. Phys. Rev. Lett., 102, 074801(2009).

    [11] H. Deng, C. Feng. Using off-resonance laser modulation for beam-energy-spread cooling in generation of short-wavelength radiation. Phys. Rev. Lett., 111, 084801(2013).

    [12] G. Stupakov. Frequency multiplication using coherent radiation of a “snake” beam. Phys. Rev. ST Accel. Beams, 16, 010702(2013).

    [13] Z. Huang et al. Suppression of microbunching instability in the linac coherent light source. Phys. Rev. ST Accel. Beams, 7, 074401(2004).

    [14] J. Tang et al. Laguerre–Gaussian mode laser heater for microbunching instability suppression in free-electron lasers. Phys. Rev. Lett., 124, 134801(2020).

    [15] A. A. Zholents, W. M. Fawley. Proposal for intense attosecond radiation from an x-ray free-electron laser. Phys. Rev. Lett., 92, 224801(2004).

    [16] A. A. Zholents. Method of an enhanced self-amplified spontaneous emission for x-ray free electron lasers. Phys. Rev. ST Accel. Beams, 8, 040701(2005).

    [17] E. L. Saldin, E. A. Schneidmiller, M. V. Yurkov. Self-amplified spontaneous emission FEL with energy-chirped electron beam and its application for generation of attosecond x-ray pulses. Phys. Rev. ST Accel. Beams, 9, 050702(2006).

    [18] T. Tanaka. Proposal for a pulse-compression scheme in x-ray free-electron lasers to generate a multiterawatt, attosecond x-ray pulse. Phys. Rev. Lett., 110, 084801(2013).

    [19] S. Huang et al. Generation of subterawatt-attosecond pulses in a soft x-ray free-electron laser. Phys. Rev. Accel. Beams, 19, 080702(2016).

    [20] J. P. Duris et al. Controllable x-ray pulse trains from enhanced self-amplified spontaneous emission. Phys. Rev. Lett., 126, 104802(2021).

    [21] N. R. Thompson, B. W. J. McNeil. Mode locking in a free-electron laser amplifier. Phys. Rev. Lett., 100, 203901(2008).

    [22] E. Kur et al. A wide bandwidth free-electron laser with mode locking using current modulation. New J. Phys., 13, 063012(2011).

    [23] E. Hemsing et al. Helical electron-beam microbunching by harmonic coupling in a helical undulator. Phys. Rev. Lett., 102, 174801(2009).

    [24] E. Hemsing, A. Marinelli, J. B. Rosenzweig. Generating optical orbital angular momentum in a high-gain free-electron laser at the first harmonic. Phys. Rev. Lett., 106, 164803(2011).

    [25] R. Bonifacio, C. Pellegrini, L. Narducci. Collective instabilities and high-gain regime in a free electron laser. Opt. Commun., 50, 373-378(1984).

    [26] S. Reiche. Genesis 1.3: a fully 3D time-dependent FEL simulation code. Nucl. Instrum. Methods Phys. Res., Sect. A, 429, 243-248(1999).

    [27] W. M. Fawley. A user manual for GINGER and its post-processor XPLOTGIN(2002).

    [28] H. Deng et al. Laser-induced energy modulation in a dipole and potential applications for FEL. Nucl. Instrum. Methods Phys. Res., Sect. A, 622, 508-511(2010).

    [29] Z. Zhao et al. Status of the SXFEL facility. Appl. Sci., 7, 607(2017).

    [30] C. Feng et al. Measurement of the average local energy spread of electron beam via coherent harmonic generation. Phys. Rev. ST Accel. Beams, 14, 090701(2011).

    [31] J. Yan et al. Self-amplification of coherent energy modulation in seeded free-electron lasers. Phys. Rev. Lett., 126, 084801(2021).

    [32] C. Behrens et al. Few-femtosecond time-resolved measurements of x-ray free-electron lasers. Nat. Commun., 5, 3762(2014).

    Jiawei Yan, Nanshun Huang, Haixiao Deng, Bo Liu, Dong Wang, Zhentang Zhao. First observation of laser–beam interaction in a dipole magnet[J]. Advanced Photonics, 2021, 3(4): 045003
    Download Citation