• International Journal of Extreme Manufacturing
  • Vol. 1, Issue 3, 032004 (2019)

Abstract

Femtosecond laser technology has attracted significant attention from the viewpoints of fundamental and application; especially femtosecond laser processing materials present the unique mechanism of laser-material interaction. Under the extreme nonequilibrium conditions imposed by femtosecond laser irradiation, many fundamental questions concerning the physical origin of the material removal process remain unanswered. In this review, cutting-edge ultrafast dynamic observation techniques for investigating the fundamental questions, including timeresolved pump-probe shadowgraphy, ultrafast continuous optical imaging, and four-dimensional ultrafast scanning electron microscopy, are comprehensively surveyed. Each technique is described in depth, beginning with its basic principle, followed by a description of its representative applications in laser-material interaction and its strengths and limitations. The consideration of temporal and spatial resolutions and panoramic measurement at different scales are two major challenges. Hence, the prospects for technical advancement in this field are discussed finally.