• High Power Laser Science and Engineering
  • Vol. 9, Issue 4, 04000e63 (2021)
J. Bromage*, S.-W. Bahk, M. Bedzyk, I. A. Begishev, S. Bucht, C. Dorrer, C. Feng, C. Jeon, C. Mileham, R. G. Roides, K. Shaughnessy, M. J. Shoup, M. Spilatro, B. Webb, D. Weiner, and J. D. Zuegel
Author Affiliations
  • Laboratory for Laser Energetics, University of Rochester, Rochester, NY14623, USA
  • show less


    Optical parametric chirped-pulse amplification implemented using multikilojoule Nd:glass pump lasers is a promising approach for producing ultra-intense pulses (>1023 W/cm2). We report on the MTW-OPAL Laser System, an optical parametric amplifier line (OPAL) pumped by the Nd:doped portion of the multi-terawatt (MTW) laser. This midscale prototype was designed to produce 0.5-PW pulses with technologies scalable to tens of petawatts. Technology choices made for MTW-OPAL were guided by the longer-term goal of two full-scale OPALs pumped by the OMEGA EP to produce 2 × 25-PW beams that would be co-located with kilojoule-nanosecond ultraviolet beams. Several MTW-OPAL campaigns that have been completed since “first light” in March 2020 show that the laser design is fundamentally sound, and optimization continues as we prepare for “first-focus” campaigns later this year.

    1. Introduction

    Ultra-intense laser systems are being developed by a number of institutions to use the full potential of deuterated potassium dihydrogen phosphate (DKDP) for high-energy optical parametric chirped-pulse amplification (OPCPA)[15]. Noncollinear optical parametric amplifiers (NOPAs) based on large DKDP crystals produce broadband gain for supporting pulses as short as 10 fs. Although OPCPA is now routinely used as a broadband front-end technology, scaling OPCPA to more than 100 J is still an active area of research.