• Chinese Optics Letters
  • Vol. 20, Issue 7, 073602 (2022)
Penglong Ren1、2, Shangming Wei1、2, Pu Zhang1、2, and Xue-Wen Chen1、2、*
Author Affiliations
  • 1School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.3788/COL202220.073602 Cite this Article Set citation alerts
    Penglong Ren, Shangming Wei, Pu Zhang, Xue-Wen Chen. Probing fluorescence quantum efficiency of single molecules in an organic matrix by monitoring lifetime change during sublimation[J]. Chinese Optics Letters, 2022, 20(7): 073602 Copy Citation Text show less
    References

    [1] T. Basché, W. Moerner, M. Orrit, U. Wild. Single-Molecule Optical Detection, Imaging and Spectroscopy(1997).

    [2] B. Lounis, M. Orrit. Single-photon sources. Rep. Prog. Phys., 68, 1129(2005).

    [3] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 79, 135(2007).

    [4] S. Scheel. Single-photon sources–an introduction. J. Mod. Opt., 56, 141(2009).

    [5] S. V. Polyakov, A. L. Migdall. Quantum radiometry. J. Mod. Opt., 56, 1045(2009).

    [6] P. Zhang, L. Lu, F. Qu, X. Jiang, X. Zheng, Y. Lu, S. Zhu, X.-S. Ma. High-quality quantum process tomography of time-bin qubit’s transmission over a metropolitan fiber network and its application. Chin. Opt. Lett., 18, 082701(2020).

    [7] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu. A quantum dot single-photon turnstile device. Science, 290, 2282(2000).

    [8] J. C. Loredo, N. A. Zakaria, N. Somaschi, C. Anton, L. de Santis, V. Giesz, T. Grange, M. A. Broome, O. Gazzano, G. Coppola, I. Sagnes, A. Lemaitre, A. Auffeves, P. Senellart, M. P. Almeida, A. G. White. Scalable performance in solid-state single-photon sources. Optica, 3, 433(2016).

    [9] X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, J.-W. Pan. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett., 116, 020401(2016).

    [10] I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, S. Prawer. Diamond-based single-photon emitters. Rep. Prog. Phys., 74, 076501(2011).

    [11] I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, S. Prawer. Diamond-based single-photon emitters. Rep. Prog. Phys., 74, 076501(2011).

    [12] B. Zhao, Y. Dong, S. Zhang, X. Chen, W. Zhu, F. Sun. Improving the NV generation efficiency by electron irradiation. Chin. Opt. Lett., 18, 080201(2020).

    [13] J. Hong, C. Jin, J. Yuan, Z. Zhang. Atomic defects in two-dimensional materials: from single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv. Mater., 29, 1606434(2017).

    [14] C. Toninelli, K. Early, J. Bremi, A. Renn, S. Götzinger, V. Sandoghdar. Near-infrared single-photons from aligned molecules in ultrathin crystalline films at room temperature. Opt. Express, 18, 6577(2010).

    [15] C. Polisseni, K. D. Major, S. Boissier, S. Grandi, A. S. Clark, E. A. Hinds. Stable, single-photon emitter in a thin organic crystal for application to quantum-photonic devices. Opt. Express, 24, 5615(2016).

    [16] S. Wei, P. Ren, Y. He, P. Zhang, X.-W. Chen. Single-molecule-doped crystalline nanosheets for delicate photophysics studies and directional single-photon-emitting devices. Phys. Rev. Appl, 13, 064023(2020).

    [17] A. A. Nicolet, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, M. Orrit. Single dibenzoterrylene molecules in an anthracene crystal: spectroscopy and photophysics. ChemPhysChem, 8, 1215(2007).

    [18] D. Wang, H. Kelkar, D. Martin-Cano, T. Utikal, S. Götzinger, V. Sandoghdar. Coherent coupling of a single molecule to a scanning Fabry–Perot microcavity. Phys. Rev. X, 7, 021014(2017).

    [19] S. Pazzagli, P. Lombardi, D. Martella, M. Colautti, B. Tiribilli, F. S. Cataliotti, C. Toninelli. Self-assembled nanocrystals of polycyclic aromatic hydrocarbons show photostable single-photon emission. ACS Nano, 12, 4295(2018).

    [20] J. Hwang, E. A. Hinds. Dye molecules as single-photon sources and large optical nonlinearities on a chip. New J. Phys., 13, 085009(2011).

    [21] S. Grandi, M. P. Nielsen, J. Cambiasso, S. Boissier, K. D. Major, C. Reardon, T. F. Krauss, R. F. Oulton, E. A. Hinds, A. S. Clark. Hybrid plasmonic waveguide coupling of photons from a single molecule. APL Photonics, 4, 086101(2019).

    [22] P. Türschmann, N. Rotenberg, J. Renger, I. Harder, O. Lohse, T. Utikal, S. Götzinger, V. Sandoghdar. Chip-based all-optical control of single molecules coherently coupled to a nanoguide. Nano Lett., 17, 4941(2017).

    [23] D. Rattenbacher, A. Shkarin, J. Renger, T. Utikal, S. Götzinger, V. Sandoghdar. Coherent coupling of single molecules to on-chip ring resonators. New J. Phys., 21, 062002(2019).

    [24] X. Brokmann, L. Coolen, M. Dahan, J. P. Hermier. Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission. Phys. Rev. Lett., 93, 107403(2004).

    [25] B. C. Buchler, T. Kalkbrenner, C. Hettich, V. Sandoghdar. Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror. Phys. Rev. Lett., 95, 063003(2005).

    [26] S. Castelletto, I. Aharonovich, B. C. Gibson, B. C. Johnson, S. Prawer. Imaging and quantum-efficiency measurement of chromium emitters in diamond. Phys. Rev. Lett., 105, 217403(2010).

    [27] R. J. Walters, J. Kalkman, A. Polman, H. A. Atwater, M. J. A. de Dood. Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2. Phys. Rev. B, 73, 132302(2006).

    [28] W. Xu, X. Hou, Y. Meng, R. Meng, Z. Wang, H. Qin, X. Peng, X.-W. Chen. Deciphering charging status, absolute quantum efficiency, and absorption cross section of multicarrier states in single colloidal quantum dots. Nano Lett., 17, 7487(2017).

    [29] E. M. Purcell, H. C. Torrey, R. V. Pound. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev., 69, 37(1946).

    [30] W. L. Barnes. Fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt., 45, 661(1998).

    [31] G. Chen, J. Zhu, X. Li. Influence of a dielectric decoupling layer on the local electric field and molecular spectroscopy in plasmonic nanocavities: a numerical study. Chin. Opt. Lett., 19, 123001(2021).

    [32] A. A. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, M. Orrit. Single dibenzoterrylene molecules in an anthracene crystal: main insertion sites. ChemPhysChem, 8, 1929(2007).

    [33] L. Novotny, B. Hecht. Principles of Nano-Optics(2012).

    [34] I. Nakada. The optical properties of anthracene single crystals. J. Phys. Soc. Jpn., 17, 113(1962).

    [35] L. A. Nakhimovsky, I. Joussot-Dubien, M. Lamotte. Handbook of Low-Temperature Electronic Spectra of Polycyclic Aromatic Hydrocarbons(1989).

    Penglong Ren, Shangming Wei, Pu Zhang, Xue-Wen Chen. Probing fluorescence quantum efficiency of single molecules in an organic matrix by monitoring lifetime change during sublimation[J]. Chinese Optics Letters, 2022, 20(7): 073602
    Download Citation