• Journal of Innovative Optical Health Sciences
  • Vol. 15, Issue 6, 2250035 (2022)
Yiming Zhou1、∥, Wenlong Zeng1、∥, Mengxuan Wang1、∥, Rui Li1, Xiuli Yue2、*, and Zhifei Dai1、**
Author Affiliations
  • 1Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, P. R. China
  • 2School of Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
  • show less
    DOI: 10.1142/S1793545822500353 Cite this Article
    Yiming Zhou, Wenlong Zeng, Mengxuan Wang, Rui Li, Xiuli Yue, Zhifei Dai. Ultrasmall pH-responsive silicon phthalocyanine micelle for selective photodynamic therapy against tumor[J]. Journal of Innovative Optical Health Sciences, 2022, 15(6): 2250035 Copy Citation Text show less
    References

    [1] A. Crous, E. Chizenga, N. Hodgkinson, H. Abrahamse. Targeted photodynamic therapy: A novel approach to abolition of human cancer stem cells. Int. J. Opt., 2018, 7317063(2018).

    [2] J. C. Yan, T. Gao, Z. Z. Lu, J. B. Yin, Y. Zhang, R. J. Pei. Aptamer-targeted photodynamic platforms for tumor therapy. ACS Appl. Mater. Interfaces, 13, 27749-27773(2021).

    [3] H. H. Liu, J. W. Yao, H. H. Guo, X. W. Cai, Y. Jiang, M. Lin, X. J. Jiang, N. Leung, C. S. Xu. Tumor microenvironment-responsive nanomaterials as targeted delivery carriers for photodynamic anticancer therapy. Front. Chem., 8, 758(2020).

    [4] S. Gomez, A. Tsung, Z. W. Hu. Current targets and bioconjugation strategies in photodynamic diagnosis and therapy of cancer. Molecules, 25, 4964(2020).

    [5] P. Gierlich, A. I. Mata, C. Donohoe, R. M. M. Brito, M. O. Senge, L. C. Gomes-da-Silva. Ligand-targeted delivery of photosensitizers for cancer treatment. Molecules, 25, 5317(2020).

    [6] H. Kobayashi, P. L. Choyke. Near-infrared photoimmunotherapy of cancer. Acc. Chem. Res., 52, 2332-2339(2019).

    [7] M. Kuroki, N. Shirasu. Novel treatment strategies for cancer and their tumor-targeting approaches using antibodies against tumor-associated antigens. Anticancer Res., 34, 4481-4488(2014).

    [8] T. Kadota, D. Kotani, Y. Yoda, M. Fukutani, M. Wakabayashi, S. Nomura, N. Fuse, A. Sato, T. Yano, K. Shitara. A phase Ib study of near infrared photoimmunotherapy (NIR-PIT) using ASP-1929 in combination with nivolumab and for patients with advanced gastric or esophageal cancer (GE-PIT study, EPOC1901). J. Clin. Oncol., 38, TPS457(2020).

    [9] M. A. Biel, A. M. Gillenwater, D. M. Cognetti, J. M. Johnson, A. Argiris, M. Tahara. A global phase Ill multicenter, randomized, double arm, open label trial of ASP-1929 photoimmunotherapy versus physician’s choice standard of care for the treatment of patients with locoregional, recurrent head and neck squamous cell carcinoma (rHNSCC). J. Clin. Oncol., 37, TPS6094(2019).

    [10] E. Ranyuk, N. Cauchon, K. Klarskov, B. Guerin, J. E. van Lier. Phthalocyanine-peptide conjugates: Receptor-targeting bifunctional agents for imaging and photodynamic therapy. J. Med. Chem., 56, 1520-1534(2013).

    [11] M. R. Ke, S. L. Yeung, W. P. Fong, D. K. P. Ng, P. C. Lo. A phthalocyanine-peptide conjugate with high in vitro photodynamic activity and enhanced in vivo tumor-retention property. Chem. Eur. J., 18, 4225-4233(2012).

    [12] B. Y. Zheng, X. Q. Yang, Y. Zhao, Q. F. Zheng, M. R. Ke, T. Lin, R. X. Chen, K. K. K. Ho, N. Kumar, J. D. Huang. Synthesis and photodynamic activities of integrin-targeting silicon(IV) phthalocyanine-cRGD conjugates. Eur. J. Med. Chem., 155, 24-33(2018).

    [13] Q. Liu, M. P. Pang, S. H. Tan, J. Wang, Q. L. Chen, K. Wang, W. J. Wu, Z. Y. Hong. Potent peptide-conjugated silicon phthalocyanines for tumor photodynamic therapy. J. Cancer, 9, 310-320(2018).

    [14] S. Wang, J. Wang, J. Y. Chen. Conjugates of folic acids with zinc aminophthalocyanine for cancer cell targeting and photodynamic therapy by one-photon and two-photon excitations. J. Mater. Chem. B, 2, 1594-1602(2014).

    [15] Y. X. Li, J. Wang, X. X. Zhang, W. J. Guo, F. Li, M. Yu, X. Q. Kong, W. J. Wu, Z. Y. Hong. Highly water-soluble and tumor-targeted photosensitizers for photodynamic therapy. Org. Biomol. Chem., 13, 7681-7694(2015).

    [16] G. Nkepang, M. Bio, P. Rajaputra, S. G. Awuah, Y. You. Folate receptor-mediated enhanced and specific delivery of far-red light-activatable prodrugs of combretastatin A-4 to FR-positive tumor. Bioconjug. Chem., 25, 2175-2188(2014).

    [17] Y. W. Zheng, S. F. Chen, B. Y. Zheng, M. R. Ke, J. D. Huang. A silicon(IV) phthalocyanine-folate conjugate as an efficient photosensitizer. Chem. Lett., 43, 1701-1703(2014).

    [18] F. Lv, X. J. He, L. Wu, T. J. Liu. Lactose substituted zinc phthalocyanine: A near infrared fluorescence imaging probe for liver cancer targeting. Bioorg. Med. Chem. Lett., 23, 1878-1882(2013).

    [19] D. Li, Q. Y. Hu, X. Z. Wang, X. S. Li, J. Q. Hu, B. Y. Zheng, M. R. Ke, J. D. Huang. A non-aggregated silicon(IV) phthalocyanine-lactose conjugate for photodynamic therapy. Bioorg. Med. Chem. Lett., 30, 127164(2020).

    [20] X. S. Li, S. Kolemen, J. Yoon, E. U. Akkaya. Activatable photosensitizers: Agents for selective photodynamic therapy. Adv. Funct. Mater., 27, 1604053(2017).

    [21] R. C. H. Wong, P. C. Lo, D. K. P. Ng. Stimuli responsive phthalocyanine-based fluorescent probes and photosensitizers. Coord. Chem. Rev., 379, 30-46(2019).

    [22] X. S. Li, S. Yu, Y. Lee, T. Guo, N. Kwon, D. Lee, S. C. Yeom, Y. Cho, G. Kim, J. D. Huang, S. Choi, K. T. Nam, J. Yoon. In vivo albumin traps photosensitizer monomers from self-assembled phthalocyanine nanovesicles: A facile and switchable theranostic approach. J. Am. Chem. Soc., 141, 1366-1372(2019).

    [23] S. Y. S. Chow, R. C. H. Wong, S. R. Zhao, P. C. Lo, D. K. P. Ng. Disulfide-linked dendritic oligomeric phthalocyanines as glutathione-responsive photosensitizers for photodynamic therapy. Chem. Eur. J., 24, 5779-5789(2018).

    [24] M. Liu, C. H. Li. Recent advances in activatable organic photosensitizers for specific photodynamic therapy. ChemPlusChem, 85, 948-957(2020).

    [25] B. D. Zheng, J. Ye, X. Q. Zhang, N. Zhang, M. T. Xiao. Recent advances in supramolecular activatable phthalocyanine-based photosensitizers for anti-cancer therapy. Coord. Chem. Rev., 447, 214155(2021).

    [26] F. Gong, N. L. Yang, X. W. Wang, Q. Zhao, Q. Chen, Z. Liu, L. Cheng. Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics. Nano Today, 32, 100851(2020).

    [27] A. Jhaveri, P. Deshpande, V. Torchilin. Stimuli-sensitive nanopreparations for combination cancer therapy. J. Control Release, 190, 352-370(2014).

    [28] Y. H. Wu, F. N. A. Li, X. Q. Zhang, Z. Q. Li, Q. F. Zhang, W. J. Wang, D. Y. Pan, X. L. Zheng, Z. W. Gu, H. Zhang, Q. Y. Gong, K. Luo. Tumor microenvironment-responsive PEGylated heparin-pyropheophorbide - A nanoconjugates for photodynamic therapy. Carbohydr. Polym., 255, 117490(2021).

    [29] N. Yang, W. Y. Xiao, X. J. Song, W. J. Wang, X. C. Dong. Recent advances in tumor microenvironment hydrogen peroxide-responsive materials for cancer photodynamic therapy. Nano-Micro Lett., 12, 15(2020).

    [30] D. Jia, X. B. Ma, Y. Lu, X. Y. Li, S. X. Hou, Y. Gao, P. Xue, Y. J. Kang, Z. G. Xu. ROS-responsive cyclodextrin nanoplatform for combined photodynamic therapy and chemotherapy of cancer. Chin. Chem. Lett., 32, 162-167(2021).

    [31] S. Kwon, H. Ko, D. G. You, K. Kataoka, J. H. Park. Nanomedicines for reactive oxygen species mediated approach: An emerging paradigm for cancer treatment. Acc. Chem. Res., 52, 1771-1782(2019).

    [32] E. Boedtkjer, S. F. Pedersen. The acidic tumor microenvironment as a driver of cancer. Annu. Rev. Physiol., 82, 103-126(2020).

    [33] Y. L. Dai, C. Xu, X. L. Sun, X. Y. Chen. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem. Soc. Rev., 46, 3830-3852(2017).

    [34] S. Thakkar, D. Sharma, K. Kalia, R. K. Tekade. Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A review. Acta Biomater., 101, 43-68(2020).

    [35] M. Z. Jin, W. L. Jin. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct. Target Ther., 5, 166(2020).

    [36] A. Gulzar, J. T. Xu, C. Wang, F. He, D. Yang, S. L. Gai, P. P. Yang, J. Lin, D. Y. Jin, B. G. Xing. Tumour microenvironment responsive nanoconstructs for cancer theranostic. Nano Today, 26, 16-56(2019).

    [37] S. F. Yan, J. C. Chen, L. Z. Cai, P. Xu, Y. X. Zhang, S. J. Li, P. Hu, X. Y. Chen, M. D. Huang, Z. Chen. Phthalocyanine-based photosensitizer with tumor-pH-responsive properties for cancer theranostics. J. Mater. Chem. B, 6, 6080-6088(2018).

    [38] A. Wang, L. Gui, S. Lu, L. Zhou, J. H. Zhou, S. H. Wei. Tumor microenvironment-responsive charge reversal zinc phthalocyanines based on amino acids for photodynamic therapy. Dyes Pigm., 126, 239-250(2016).

    [39] A. R. Karimi, A. Khodadadi, M. Hadizadeh. A nanoporous photosensitizing hydrogel based on chitosan cross-linked by zinc phthalocyanine: An injectable and pH-stimuli responsive system for effective cancer therapy. RSC Adv., 6, 91445-91452(2016).

    [40] X. H. Hu, Z. Y. Gao, H. P. Tan, L. Zhang. A pH-responsive multifunctional nanocarrier in the application of chemo-photodynamic therapy. J. Nanomater., 2019, 3898564(2019).

    [41] A. L. Lin, S. Z. Li, C. H. Xu, X. S. Li, B. Y. Zheng, J. J. Gu, M. R. Ke, J. D. Huang. A pH-responsive stellate mesoporous silica based nanophotosensitizer for in vivo cancer diagnosis and targeted photodynamic therapy. Biomater. Sci. UK, 7, 211-219(2019).

    [42] X. S. Li, B. Y. Zheng, M. R. Ke, Y. F. Zhang, J. D. Huang, J. Yoon. A tumor-pH-responsive supramolecular photosensitizer for activatable photodynamic therapy with minimal in vivo skin phototoxicity. Theranostics, 7, 2746-2756(2017).

    [43] R. C. H. Wong, S. Y. S. Chow, S. Zhao, W. P. Fong, D. K. P. Ng, P. C. Lo. pH-responsive dimeric zinc(II) phthalocyanine in mesoporous silica nanoparticles as an activatable nanophotosensitizing system for photodynamic therapy. ACS Appl. Mater. Interfaces, 9, 23487-23496(2017).

    [44] X. Wang, M. H. Li, Y. H. Hou, Y. N. Li, X. M. Yao, C. C. Xue, Y. Fei, Y. Xiang, K. Y. Cai, Y. L. Zhao, Z. Luo. Tumor-microenvironment-activated in situ self-assembly of sequentially responsive biopolymer for targeted photodynamic therapy. Adv. Funct. Mater., 30, 2000229(2020).

    [45] M. R. Song, D. Y. Li, F. Y. Nian, J. P. Xue, J. J. Chen. Zeolitic imidazolate metal organic framework-8 as an efficient pH-controlled delivery vehicle for zinc phthalocyanine in photodynamic therapy. J. Mater. Sci., 53, 2351-2361(2018).

    Yiming Zhou, Wenlong Zeng, Mengxuan Wang, Rui Li, Xiuli Yue, Zhifei Dai. Ultrasmall pH-responsive silicon phthalocyanine micelle for selective photodynamic therapy against tumor[J]. Journal of Innovative Optical Health Sciences, 2022, 15(6): 2250035
    Download Citation