• Photonics Research
  • Vol. 9, Issue 7, 1182 (2021)
Ahmed E. Hassanien*, Steffen Link, Yansong Yang, Edmond Chow, Lynford L. Goddard, and Songbin Gong
Author Affiliations
  • Holonyak Micro and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
  • show less
    DOI: 10.1364/PRJ.421612 Cite this Article Set citation alerts
    Ahmed E. Hassanien, Steffen Link, Yansong Yang, Edmond Chow, Lynford L. Goddard, Songbin Gong. Efficient and wideband acousto-optic modulation on thin-film lithium niobate for microwave-to-photonic conversion[J]. Photonics Research, 2021, 9(7): 1182 Copy Citation Text show less
    References

    [1] B. E. A. Saleh, M. C. Teich. Fundamentals of Photonics(2019).

    [2] C. S. Tsai. Guided-Wave Acousto-Optics: Interactions, Devices, and Applications(1990).

    [3] M. Bahadori, Y. Yang, A. E. Hassanien, L. L. Goddard, S. Gong. Ultra-efficient and fully isotropic monolithic microring modulators in a thin-film lithium niobate photonics platform. Opt. Express, 28, 29644-29661(2020).

    [4] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [5] R. Lu, T. Manzaneque, Y. Yang, M. H. Li, S. Gong. Gigahertz low-loss and wideband S0 mode lithium niobate acoustic delay lines. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 66, 1373-1386(2019).

    [6] S. A. Tadesse, M. Li. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies. Nat. Commun., 5, 5402(2014).

    [7] S. A. Tadesse, H. Li, Q. Liu, M. Li. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band. Appl. Phys. Lett., 107, 201113(2015).

    [8] S. Ghosh, G. Piazza. Laterally vibrating resonator based elasto-optic modulation in aluminum nitride. APL Photon., 1, 036101(2016).

    [9] M. Mahmoud, L. Cai, A. Mahmoud, T. Mukherjee, G. Piazza. Electro-optically controlled acousto-optic racetrack modulator etched in LNOI platform. IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 743-746(2018).

    [10] L. Fan, C. L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, H. X. Tang. Integrated optomechanical single-photon frequency shifter. Nat. Photonics, 10, 766-770(2016).

    [11] G. Fan, Y. Li, C. Hu, L. Lei, D. Zhao, H. Li, Z. Zhen. A novel concept of acousto-optic ring frequency shifters on silicon-on-insulator technology. Opt. Laser Technol., 63, 62-65(2014).

    [12] W. Yang, Y. Liu, L. Xiao, Z. Yang. Wavelength-tunable erbium-doped fiber ring laser employing an acousto-optic filter. J. Lightwave Technol., 28, 118-122(2010).

    [13] Z. Shen, X. Han, C. L. Zou, H. X. Tang. Phase sensitive imaging of 10 GHz vibrations in an AlN microdisk resonator. Rev. Sci. Instrum., 88, 123709(2017).

    [14] G. Ryu, Y. Lee, K. Lee. Development of acoustic-optic (AO) SLM applicable to 3D holographic dispay. 19th International Conference on Solid-State Sensors, Actuators and Microsystems, 1979-1982(2017).

    [15] M. N. Armenise, V. M. N. Passaro, G. Noviello. Lithium niobate guided-wave beam former for steering phased-array antennas. Appl. Opt., 33, 6194-6209(1994).

    [16] W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. V. A. N. Laer, A. H. Safavi-Naeini. Lithium niobate piezo-optomechanical crystals. Optica, 6, 845-853(2019).

    [17] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [18] L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, M. Lončar. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica, 6, 1498-1505(2019).

    [19] M. Mahmoud, A. Mahmoud, L. Cai, M. Khan, T. Mukherjee, J. Bain, G. Piazza. Novel on chip rotation detection based on the acousto-optic effect in surface acoustic wave gyroscopes. Opt. Express, 26, 25060-25075(2018).

    [20] L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, G. Piazza. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photon. Res., 7, 1003-1013(2019).

    [21] R. S. Weis, T. K. Gaylord. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A, 37, 191-203(1985).

    [22] K. K. Wang. Properties of Lithium Niobate(2002).

    [23] S. Gong, H. Bhugra, G. Piazza. Lithium niobate for M/NEMS resonators. Piezoelectric MEMS Resonators, 99-129(2017).

    [24] M. M. De Lima, M. Beck, R. Hey, P. V. Santos. Compact Mach-Zehnder acousto-optic modulator. Appl. Phys. Lett., 89, 121104(2006).

    [25] A. Crespo-Poveda, R. Hey, K. Biermann, A. Tahraoui, P. V. Santos, B. Gargallo, P. Muñoz, A. Cantarero, M. M. de Lima. Synchronized photonic modulators driven by surface acoustic waves. Opt. Express, 21, 21669-21676(2013).

    [26] A. E. Hassanien, E. Chow, S. Link, Y. Yang, L. L. Goddard, S. Gong. Wideband acousto-optical modulation on suspended thin-film lithium niobate. Conference on Lasers and Electro-Optics(2021).

    [27] K. H. Shakthi Murugan, M. Sumathi. Design and analysis of 5G optical communication system for various filtering operations using wireless optical transmission. Results Phys., 12, 460-468(2019).

    [28] M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, M. Lončar. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

    [29] A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, H. G. L. Schwefel. Resonant electro-optic frequency comb. Nature, 568, 378-381(2019).

    [30] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade. Photonic Crystals: Molding the Flow of Light(2008).

    [31] B. A. Auld. Acoustic Fields and Waves in Solids(1973).

    [32] D. Royer, E. Dieulesaint. Elastic Waves in Solids: Free and Guided Propagation(1996).

    [33] R. Lu, T. Manzaneque, Y. Yang, S. Gong. Lithium niobate phononic crystals for tailoring performance of RF laterally vibrating devices. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 65, 934-944(2018).

    [34] M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, H. Bakhru. Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett., 73, 2293-2295(1998).

    [35] Y. Yang, M. Bahadori, A. E. Hassanien, L. L. Goddard, S. Gong. An isotropic lithium niobate microring resonator with a 1.38-nm wide continuous tuning range using 80 V. Conference on Lasers and Electro-Optics, JTh2F.27(2020).

    [36] C. Campbell, J. C. Burgess. Surface acoustic wave devices and their signal processing applications. J. Acoust. Soc. Am., 89, 1479-1480(1991).

    [37] M. S. I. Khan, A. Mahmoud, L. Cai, M. Mahmoud, T. Mukherjee, J. A. Bain, G. Piazza. Extraction of elastooptic coefficient of thin-film arsenic trisulfide using a Mach-Zehnder acoustooptic modulator on lithium niobate. J. Lightwave Technol., 38, 2053-2059(2020).

    [38] R. Lu, Y. Yang, S. Gong. Low-loss unidirectional acoustic focusing transducer in thin-film lithium niobate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 67, 2731-2737(2020).

    Ahmed E. Hassanien, Steffen Link, Yansong Yang, Edmond Chow, Lynford L. Goddard, Songbin Gong. Efficient and wideband acousto-optic modulation on thin-film lithium niobate for microwave-to-photonic conversion[J]. Photonics Research, 2021, 9(7): 1182
    Download Citation