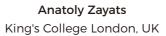


Conference Schedule


Conference Schedule	Nov 21	Nov 22	Nov 23
Advanced Endoscopy Workshop	09:00-16:45		
Lithium Niobate Photonics Workshop	09:00-16:45		
Orbital Angular Momentum Workshop	09:00-16:45		
Technical Sessions		08:30-11:45	08:30-11:45 14:00-17:15
Opening & Plenary Session		14:00-17:50	
Poster Session		17:50-18:50	

General Chairs

Honorary Chair

Shiqiang Zhu Zhejiang Lab, China

Xiaocong Yuan Shenzhen University, China

Organizers

Plenary Speakers

Xu Liu

Zhejiang University, China

Andrew Forbes
University of the Witwatersrand Johannesburg, South Africa

Xu Liu Zhejiang University, China

Sponsor

Jianyu Wang Hangzhou Institute for Advanced Study, UCAS, China

Sessions

Biophotonics

Endoscopic imaging, Novel imaging techniques, Optical imaging, Photoacoustic imaging, Raman imaging, Super-resolution imaging.

Session Chairs

Dan Elson Imperial College London, UK

Mike Somekh Shenzhen University, China

Xunbin Wei Peking University, China

Peng Xi Peking University, China

Nanophotonics and optical computing

Metamaterials & metasurface, Nano manufacturing, Nano-optical imaging, Nanophotonic waveguides & devices, Surface plasmon polariton, Topological photonics.

Session Chairs

Daoxin Dai Zhejiang University, China

Junsuk Rho Pohang University of Science and Technology, Korea

Guohai Situ Shanghai Institute of Optics and Fine Mechanics, CAS, China

Qinghai Song Harbin Institute of Technology, China

Laser and nonlinear optics

Advanced materials, Integrated optical comb, Laser technique, Microcavity nonlinear optics, Nonlinear nano-optics, Nonlinear optics.

Session Chairs

Abdul Elezzabi University of Alberta, Canada

Sarah Houver University of Paris, France

Xiaoshun Jiang Nanjing University, China

Dingyuan Tang Nanyang Technological University, Singapore

Sensing and imaging

Advanced optical sensing, Computational imaging, Human-like sensor, New optical fiber sensing, Optical information AI processing, Super space-time.

Session Chairs

Tsinghua University, China

Baiou Guan Jinan University, China

Tawfique Hasan

University of Cambridge, UK Zhejiang University, China

Lithium Niobate Photonics Workshop

Lithium niobate, Thin film lithium niobate, Optical modulator, Photonic integrated circuit, Nonlinear optics, Heterogeneous integration

Chairs

Siyuan Yu Sun Yat-sen University, China

Ruijun Wang Sun Yat-sen University, China

Orbital Angular Momentum Workshop

OAM nonlinearity, Optical vortex theory, OAM for quantum information, OAM free sapce communications, OAM data storage

Chairs

Qiwen Zhan
University of Shanghai for Science and
Technology (USST), China

Fu Feng Shenzhen University, China

Luping Du Shenzhen University, China

Advanced Endoscopy Workshop

Endoscopic imaging, Multimodal endoscope, Endoscopic therapy

Chairs

Qing Yang Zhejiang University, China

Liqiang WangZhejiang University, China

Ji Qi Zhejiang Lab, China

Yizhou Tan
First Medical Center of Chinese PLA
General Hospital, China

Ling FuHuazhong University of Science and Technology, China

Lithium Niobate Photonics Workshop

Online

November 21, 2022

Presider: S	Siyuan Yu, Sun Yat-sen University, China
09:00-09:30	High speed thin-film lithium niobate devices Xinlun Cai Sun Yat-sen University, China
09:30-10:00	Integrated active/passive photonic devices on thin film lithium niobate Ya Cheng East China Normal University, China
10:00-10:15	Break
10:15-10:45	Commercialization opportunity and development of thin film lithium niobate modulators Weihua Guo Huazhong University of Science and Technology, China
10:45-11:15	Lithium niobate photonic integrated circuits for future optical and microwave links Cheng Wang City University of Hong Kong, China
11:15-13:30	Lunch
Presider: F	Ruijun Wang, Sun Yat-sen University, China
13:30-14:00	Femtosecond laser writing of lithium niobate nonlinear photonic crystals Yong Zhang Nanjing University, China
14:00-14:30	Optical ranging using integrated lithium niobate electro-optic frequency combs Yang Li Tsinghua University, China
14:30-15:00	Broadband and cascaded second-order nonlinear optical effects in lithium niobite ridge waveguides Fang Bo Nankai University, China
15:00-15:15	Break
15:15-15:45	Deterministic N-photon State Generation Using Lithium Niobate on Insulator Device Zhenda Xie Nanjing University, China
15:45-16:15	Nonlinear optics based on devices on thin-film lithium niobate Jinsong Xia Huazhong University of Science and Technology, China
16:15-16:45	Frequency conversion in micrometer lithium niobate-on-insulator waveguides Yuanlin Zheng Shanghai Jiao Tong University, China

Orbital Angular Momentum Workshop

Online

November 21, 2022

		November 21, 2022
Presider: F	u Feng, Shenzhen University, China	
09:00-09:30	Plasma acceleration driven by super intense Laguerre–Gaussian laser Wenpeng Wang Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science	es, China
09:30-10:00	Manipulating OAM in Nonlinear Photonic Crystals Yong Zhang Nanjing University, China	
10:00-10:15	Break	
10:15-10:45	Do Vortex Beams Carry Orbital Angular Momentum? Wei Liu National University of Defense Technology, China	
10:45-11:15	Spatiotemporal Vortices of Light Chenhao Wan Huazhong University of Science and Technology, China	
11:15-13:30	Lunch	
Presider: Qiwen Zhan, University of Shanghai for Science and Technology, China		
13:30-14:00	Vector beams beyond orbital angular momentum Carmelo Rosales-Guzmán Centro de Investigaciones en Optica, Mexico	
14:00-14:30	Sensing and Multiplexing Optical Vortices at The Nanoscale Xiangping Li, Jinan University, China	
14:30-15:00	Angular Momentum and Its Topology in A General Electromagnetic Field Peng Shi Shenzhen University, China	
15:00-15:15	Break	
Presider: Luping Du, Shenzhen University, China		
15:15-15:45	Spin-Orbit Interaction of Light: From Optical Analog Computing to Quantum Hailu Luo Hunan University, China	Microscope
15:45-16:15	Geometric Phase and Nonlinear Photonic Metasurface Guixin Li Southern University of Science and Technology, China	
16:15-16:45	Active modulating of orbital angular momentum states of light Shibiao Wei Shenzhen University, China	

Advanced Endoscopy Workshop

Online

November 21, 2022

		November 21, 2022
Presider:Li	ng Fu, Huazhong University of Science and Technology, China	
09:00-09:30	High stable multimode fiber imaging Qing Yang Zhejiang Lab/Zhejiang University, China	
09:30-10:00	Progress in the Application of Digestive Endoscopy Zhendong Jin Shanghai Changhai Hospital, China	
10:00-10:15	Break	
10:15-10:45	In vivo structural and functional endoscopic imaging technology Xibin Yang Suzhou Institute of Biomedical Engineering and Technology,Chinese Academy	y of Sciences, China
10:45-11:15	Real-time volumetric imaging using time-stretched chromatic confocal micro Pu Wang Beihang University, China	scopy
11:15-13:30	Lunch	
Presider: Yizhou Tan, First Medical Center of Chinese PLA General Hospital, China		
13:30-14:00	Design and Implementation of Ultra High Magnification Endoscopic Imaging Liqiang Wang Zhejiang University, China	System
14:00-14:30	Endoscope-guided Navigation System for Skull Base Minimally Invasive Surger Jingfan Fan Beijing Institute of Technology, China	ry
14:30-15:00	Clinical Application of Neuroendoscope Qun Wu The Second Affiliated Hospital Zhejiang University School of Medicine, China	
15:00-15:15	Break	
Presider: J	i Qi, Zhejiang Lab, China	
15:15-15:45	Multidimensional optical multiplexing over a multimode fiber Yi Xu Guangdong University of Technology, China	
15:45-16:15	The application of intravascular multi-modality technologies in atherosclerosis Zhihua Xie Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Ch	
16:15-16:45	Endoscopic OCT angiography Peng Li Zhejiang University, China	

Opening Ceremony & Plenary Talks

November 22, 2022

The state of the s		
Presider: Xu Liu, Zhejiang University, China		
14:00-14:30	Opening Remarks	
14:30-14:35	Introduction of Advanced Photonics/AP Nexus (Xiaocong Yuan, Shenzhen University, China)	
Presider: Xia	aocong Yuan, Shenzhen University, China	
14:35-15:20	Application of photon detection technology in space communication (Plenary) Jianyu Wang Hangzhou Institute for Advanced Study, UCAS, China	
15:20-16:05	High throughput laser 3D nanometer direct writing techniques (Plenary) Xu Liu Zhejiang University, China	
16:05-16:20	Break	
Presider: An	atoly Zayats, King's College London, United Kingdom	
16:20-17:05	Optical learning machines (Plenary) Demetri Psaltis Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland	
17:05-17:50	Advances in structured light lasers (Plenary) Andrew Forbes University of the Witwatersrand, South Africa	
17:50-18:50	Poster Session	

SC1. Biophotonics		Online November 22, 2022	
Presider:	Presider: Leiting Pan, Nankai University, China		
08:30-09:00	Polarization-sensitive imaging of the uterine cervix (Invited) Jessica Ramella-Roman Florida International University, United States		
09:00-09:30	Single-shot femtosecond stimulated Raman histopathology with deep learnin Minbiao Ji Fudan University, China	g (Invited)	
09:30-10:00	Deep-learning 4D live microscopy (Invited) Peng Fei Huazhong University of Science and Technology, China		
10:00-10:15	Break		
Presider: F	Peng Fei, Huazhong University of Science and Technology, China	a	
10:15-10:45	Organic Semiconductors for Biomedical Imaging (Invited) Changfeng Wu Southern University of Science and Technology, China		
10:45-11:15	Single-Molecule localization super-resolution microscopy and its applications of cytoskeleton (Invited) Leiting Pan Nankai University, China	on erythrocyte	

SC1. Biophotonics		Online November 23, 2022	
Presider: k	Presider: Ke Si, Zhejiang university, China		
08:30-09:00	Super-resolution: an adventure on a new dimension (Invited) Peng Xi Peking University, China		
09:00-09:30	Time-streched real-time volumetric confocal microscopy (Invited) Pu Wang Beihang University, China		
09:30-10:00	Upconversion nanophotonic systems for super-resolution imaging and single-molecule assays (Invited) Dayong Jin Southern University of Science and Technology, China		
10:00-10:15 Break			

Upconversion Super-resolution Microscopy (Invited)

South China Normal University, China

11:15-11:45

Qiuqiang Zhan

Presider: F	Pu Wang, Beihang University, China
10:15-10:45	Multi-dimensional Single Particle Tracking in Live Cells(Invited) Ning Fang Xiamen University, China
10:45-11:15	Ultrafast 3D histological imaging based on tissue clearing and machine learning (Invited) Ke Si Zhejiang university, China
11:15-11:45	Plasmonic Fano-resonant Metamaterial for Nanoparticle Trapping and Biosensing (Invited) Domna Kotsifaki Duke Kunshan University, China; Okinawa Institute of Science and Technology Graduate University, Japan
Presider: L	.ei Xi, Southern University of Science and Technology, China
14:00-14:30	Optical imaging for photodynamic therapy dosimetry (Invited) Buhong Li Hainan University, China
14:30-15:00	Stimulated Raman scattering imaging reveals signatures of lipid metabolism in human diseases (Invited) Shuhua Yue Beihang University, China
15:00-15:30	Multimodality photoacoustic imaging: Progress in medical applications from microscopy to endoscopy (Invited) Sihua Yang South China Normal University, China
15:30-15:45	Break
Presider: S	Shuhua Yue, Beihang University, China
15:45-16:15	Photoacoustic microscopy of brain functions (Invited) Lei Xi Southern University of Science and Technology, China
16:15-16:45	Emerging Brillouin Imaging in Biophotonics (Invited) Francesca Palombo University of Exeter, United Kingdom
16:45-17:15	Autofluorescence-Raman Analysis of Surgical Margins During Mohs Micrographic Surgery (Invited) Loan Notingher University of Nottingham, United Kingdom
17:15-17:45	Re-scan Non-linear Optical Microscopy: Architecture, Advantages and Perspectives Stefan G. Stanciu University Politehnica of Bucharest, Romania

SC2. Laser and nonlinear optics

Online

November 22, 2022

Presider: Zhenda Xie, Nanjing University, China		
08:30-09:00	Recent progress and perspectives in antiresonant hollow-core fiber technologyge fiber technology (Invited) Pu Wang Beijing University of Technology, China	
09:00-09:30	Fiber-based ultrafast mid-infrared source at unprecedented power levels (Invited) Wonkeun Chang Nanyang Technological University, Singapore	
09:30-10:00	Strong second harmonic generation from bilayer graphene with symmetry breaking by molecular Adsorption (Invited) Xuetao Gan Northwestern Polytechnical University, China	
10:00-10:15	Break	
Presider: F	Pu Wang, Beijing University of Technology, China	
10:15-10:45	Development of nonlinear optical functionalities on lithium-niobate photonic integrated circuits (Invited) Qiang Lin University of Rochester, United States	
10:45-11:15	Non-Hermitian optics in a single nonlinear microcavity (Invited) Wenjie Wan Shanghai Jiao Tong University, China	
11:15-11:45	Low-noise frequency synthesis based on microcomb at a few gigahertz (Invited) Zhenda Xie Nanjing University, China	

SC2. Laser and nonlinear optics

Online

SCZ. Laser and nonlinear optics		November 23, 2022
Presider: Tian Jiang, National University of Defense Technology, China		
08:30-09:00	Recent development and future prospects of ~3 µm lasers based on sesquioxide Deyuan Shen Jiangsu Normal University, China	de ceramics (Invited)
All-fiber multifunction-integrated devices (Invited) 99:00-09:30 Fei Xu Nanjing University, China		
09:30-10:00	Passive phase demodulation in nonlinear frequency mixing (Invited) Yan Feng Shanghai Institute of Optics and Fine Mechanics,CAS, China	
10:00-10:15	Break	

Presider: [Deyuan Shen, Jiangsu Normal University, China
10:15-10:45	Ultrafast spectroscopic investigation of low-dimensional semiconductor cavity quantum electrodynamics (Invited) Tian Jiang National University of Defense Technology, China
10:45-11:15	Controlling the light-matter interactions in nanostructures for high efficient photonic applications (Invited) Zhangkai Zhou Sun Yat-sen University, China
11:15-11:45	Electrochromic WO ₃ for nanophotoncis (Invited) Eric Hopmann University of Alberta, Canada
Presider: H	Heng Zhou, University of Electronic Science and Technology of China, China
14:00-14:30	Recent progress in multicomponent photonic glass and fibers (Invited) Shifeng Zhou South China University of Technology, China
14:30-15:00	Structure evolution at the gate-tunable suspended graphene/electrolyte Interface (Invited) Chuanshan Tian Fudan University, China
15:00-15:30	High quality colloidal microlasers enabled by manipulating optical properties of 2D nanoplatelets and controlled assembly (Invited) Handong Sun Nanyang Technological University, Singapore
15:30-15:45	Break
Presider: S	Shifeng Zhou, South China University of Technology, China
15:45-16:15	The generation and application of ultra-low noise Kerr soliton microcombs (Invited) Heng Zhou University of Electronic Science and Technology of China, China
16:15-16:45	Dissipative Kerr cavity solitons for frequency comb generation (Invited) Xiaoxiao Xue Tsinghua University, China
16:45-17:15	Deterministic switching soliton dynamics in dispersion-managed microresonator frequency combs (Invited) Wenting Wang Xiongan Institute of Innovation, CAS, China

SC3. Nanophotonics and optical computing

Online

November 22, 2022

	computing	14040111501 22, 2022
Presider: [Daoxin Dai, Zhejiang University, China	
08:30-09:00	Light-induced vacuum micromotors (Invited) Min Qiu Westlake University, China	
09:00-09:30	Geometric Phase and Nonlinear Photonic Metasurfaces (Invited) Guixin Li Southern University of Science and Technology, China	
09:30-10:00	Nonlinear Thouless Pumping (Invited) Fangwei Ye Shanghai Jiao Tong University, China	
10:00-10:15	Break	
Presider: F	Renmin Ma, Peking University, China	
10:15-10:45	Single-mode waveguide photon sieves (Invited) Qing Cao Shanghai University, China	
10:45-11:15	Rational design of wide field-of-view flat optics (Invited) Juejun Hu Massachusetts Institute of Technology, United States	
11:15-11:45	Elastic ice optical microfibers (Invited) Xin Guo Zhejiang University, China	
11:45-12:15	Integrated lithium niobate electro-optic modulator with wavelength division a Zejie Yu Zhejiang University, China	and multiplexing (Invited)

SC3. Nanophotonics and optical computing

Online

computing		November 23, 2022
Presider: Guohai Situ, Shanghai Institute of Optics and Fine Mechanics, CAS, China		
08:30-09:00	Diffractive Optical Networks & Computational Imaging Without a Computer Aydogan Ozcan University of California, United States	(Invited)
09:00-09:30	Reconfigurable Optical Metamolecules and Metamaterials(Invited) Yuebing Zheng University of Texas at Austin, United States	
09:30-10:00	Lasing Action of Topological Bound State in the Continuum: A New Approach Light Source (Invited) Chao Peng Peking University, China	Towards On-Chip Integrated

10:00-10:15	Break
Presider: 0	Chao Peng, Peking University, China
10:15-10:45	Magic angle nanolasers and twisted lattice nanocavity (Invited) Renmin Ma Peking University, China
10:45-11:15	Optimize Performance of Diffractive Neural Network (DNN) by Controlling the Fresnel Number (Invited) Lei Shi Fudan University, China
11:15-11:45	Merging metamaterials with artificial intelligence (Invited) Hongsheng Chen Zhejiang University, China
Presider: >	(iangping Li, Jinan University, China
14:00-14:30	A way towards zero-spacing photonic integrated circuits (Invited) Yun Lai Nanjing University, China
14:30-15:00	Polarization- and angle-resolved cathodoluminescence spectroscopy for nanophotonics (Invited) Zheyu Fang Peking University, China
15:00-15:30	Generation and manipulation of structured beams (Invited) Yuanjie Yang University of Electronic Science and Technology of China, China
15:30-15:45	Break
Presider: Y	uanjie Yang, University of Electronic Science and Technology of China
15:45-16:15	Intrinsic Chiral BIC Meta-structures (Invited) Chengwei Qiu National University of Singapore, Singapore
16:15-16:45	Direct laser writing based multiplexed structural colors (Invited) Qifeng Ruan Harbin University of Technology, China
16:45-17:15	Metasurface chirality and polarization optics (Invited) Xiangping Li Jinan University, China

SC4. Sensing and imaging

Online

November 22, 2022

Presider:Q	ing Yang, Zhejiang University, China		
08:30-09:00	The soul of computational imaging (Invited) Xiaopeng Shao Xidian University, China		
09:00-09:30	Efficient deep learning on low-power perception system (Invited) Guiguang Ding Tsinghua University, China		
09:30-10:00	Three-dimensional imaging through, around, and inside scattering medium (Xiaohua Feng Zhejiang Lab, China	(Invited)	
10:00-10:30	Digital adaptive optics for aberration-corrected 3D imaging (Invited) Jiamin Wu Tsinghua Universiity, China		
10:.30-10:45	Break		
Presider: E	Presider: Baiou Guan, Jinan University, China		
10:45-11:15	Fiber-enhanced spectroscopic gas sensors (Invited) Wei Jin Hong Kong Polytechnic University,Hong Kong, China		
11:15-11:45	Ultrafast distributed Brillouin optical fiber sensor based on optical chirp chain Yongkang Dong Harbin Institute of Technology, China	(Invited)	

SC4. Sensing and imaging

Online

Presider: Kebin Shi, Peking University, China Macro-scale 3D printing of glass with micro-scale 3D resolution (Invited) Ya Cheng East China Normal University, China 3D radial junction si nanowire structures for flexible photovoltaics and advanced Biomimetic Sensing Applications (Invited) Linwei Yu Nanjing University, China Artificial neuromorphic sensors for intelligent perception application (Invited) Xiaojian Zhu Ningbo Institute of Materials Technology and Engineering, China

10:00-10:15	Break
Presider: L	iangcai Cao, Tsinghua University, China
10:15-10:45	High-sensitivity hyperspectral photoacoustic microscopy (Invited) Lidai Wang The City University of Hong Kong, Hong Kong, China
10:45-11:15	Single objective light sheet imaging by using axial-to-lateral signal mapping (Invited) Kebin Shi Peking University, China
11:15-11:45	Multi-composite super-resolution microscopy based on fluorescence fluctuations (Invited) Jiong Ma Fudan University, China
Presider: 0	Chao Zuo, Nanjing University of Science and Technology, China
13:40-14:00	Quest camera and LCOS-SLM for quantitative imaging and light modulation (Sponsor) Xin Qi Hamamatsu Photonics (China) Co.,Ltd.
14:00-14:30	Novel infrared photodetectors and their smart chips (Invited) Weida Hu Shanghai Institute of Technical Physics, CAS, China
14:30-15:00	Deep learning-based optical synthetic aperture imaging technology (Invited) Jianlin Zhao Northwestern Polytechnical University, China
15:00-15:15	Break
Presider: V	Veida Hu, Shanghai Institute of Technical Physics, CAS, China
15:15-15:45	Brillouin-Kerr soliton and optomechanical optical microcombs in chip-based microresonators (Invited) Xiaoshun Jiang Nanjing University, China
15:45-16:15	Structured illumination using deep learning — with applications to high-speed 3D surface imaging (Invited) Chao Zuo Nanjing University of Science and Technology, China
16:15-16:45	Graphene oxide metalens for diffraction limited imaging and particle nanotracking application (Invited) Xueyan Li Zhejiang Sci-Tech University, China

AP 2022 Poster Lists

SC1. Biopho	otonics
AP2022-2022-000041	Particle manipulation behind a turbid medium based on the intensity transmission matrix Kaige Liu1; Hengkang zhang²; shanshan du¹; zeqi liu¹; bin zhang³*; xing fu¹*; Qiang Liu⁴* 1.Tsinghua Unversity; 2.Beijing Institute of Control Engineering; 3.Beijing Institute of Electronic System Engineering; 4.Tsinghua University
AP2022-2022-000050	Autocorrelation Function Analysis of Rotational Dynamics of Plasmonic Gold Nanorods Yuanfang Sun ¹ 1.Xiamen University
AP2022-2022-000051	SVM-based classification on AFM images of prostate cancer cells Hanxing Gao¹;Xiaoxia Si¹;Hongqin Yang¹;Yuhua Wang¹ 1.College of Photonic and Electronic Engineering, Fujian Normal University
AP2022-2022-000053	The surface nanostructure features of ovarian cancer cells by atomic force microscopy Xiaoxia Si¹;Hanxing Gao¹;Xiaoqiong Tang¹;Hongqin Yang¹;Yuhua Wang¹* 1.College of Photonic and Electronic Engineering, Fujian Normal University
AP2022-2022-000054	Using single particle orientation and rotational tracking and deep learning to resolve the orientation of gold nanoparticles in the complex environment of living cells Dongliang Song ¹ 1.Xiamen University
AP2022-2022-000057	Visualizing rotational behaviors of rod-like cargoes to assess the influences of proteins at different endocytosis stages by multimodal imaging Xin Zhang (张欣)¹ 1.Xiamen University
AP2022-2022-000063	Unsupervised learning network for noise reduction in optical-resolution photoacoustic microscopy Shuchong Peng¹:Kanggao Tang¹:Song Xianlin* 1.Nanchang University
AP2022-2022-000067	A novel volumetric fusion algorithm for optical-resolution photoacoustic microscopy based on 3D-SWT and joint weighted evaluation optimization Xianlin Song ^{1*} ;Sihang Li ¹ 1.Nanchang University
AP2022-2022-000071	CellGAN: deep-learning-based virtual stimulated Raman cytology Tinghe Fang¹;Xun Chen¹;Zhouqiao Wu²;Zhongwu Li³;Ziyu Li²;Shuhua Yue¹* 1.Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China;2.Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142: 3.Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142
AP2022-2022-000091	Stimulated Raman Scattering Microscopy Uncovers Reduced Lipid Accumulation in Glioblastoma without MGMT Methylation Nana Wang¹; Jiejun Wang²; Nan Ji³*; Shuhua Yue¹* 1. Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China; 2. Department of Neurosurgery, Beijing Tiantan Hospital Capital Medical University, Beijing, China; 3. Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University Beijing, China
AP2022-2022-000118	Classification of skin cancer using hyperspectral microscopic imaging and machine learning Meijie Qi ¹ ;Yujie Liu ¹ ;Yanru Li ¹ ;Lixin Liu ¹ *;Zhoufeng Zhang ² 1.Xidian University;2.Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences

AP2022-2022-000130	Combined Acoustic-Optics Endoscopy System For Colorectal Cancer In APC-Immunodeficient Mouse Models Chen Zhuoquan ¹ ;Kong Ruiming ¹ ;Song Yuting ¹ ;Dai Cuixia ² ;Ma Teng ^{1*} 1.Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; 2.College of sciences, Shanghai Institute of Technology
AP2022-2022-000131	Early Detection and dynamic monitor of Colitis-Associated Colorectal Cancer By Using Integrated OCT-US-NIRF Tri-modality Endoscopic Imaging System Kong Ruiming¹;Dai Cuixia²;Wang Bing¹;Chen Zhuoquan¹;Song Yuting¹;Ma Teng¹ 1.Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences;2.College of sciences, Shanghai Institute of Technology
AP2022-2022-000134	Diagnosis of retinal diseases using the vision transformer model based on optical coherence tomography images Zenan Zhou ¹ ;Chen Niu ¹ ;Huanhuan Yu ¹ ;Jiaqing Zhao ¹ ;Yuchen Wang ¹ ;Cuixia Dai ^{1*} 1.Shanghai Institute of Technology
AP2022-2022-000136	Analysis of fluorescence collection efficiency for fiber-optic scanning two-photon endomicroscopy lishuang feng)*:conghgao wang¹ 1.School of Instrumentation and Optoelectronic Engineering,Beihang University
AP2022-2022-000142	Stimulated Raman scattering microscopy reveals aberrant triglycerides accumulation in lymphatic metastasis of papillary thyroid carcinoma Junjie Zeng¹;Shuhua Yue²*;Jian Wang³*;Guoliang Wu³;Changjian Liu³ 1.School of Biological Science and Medical Engineering, Beihang University;2.School of Biological and Medical Engineering, Beihang University;3.Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
SC2. Laser a	nd nonlinear optics
AP2022-2022-000022	Flat multi-wavelength cylindrical vector beam fiber laser by using a re-circulating frequency shifter loop with two external injections Jialang Zhang ¹ :Anting Wang ^{1*} 1.Department of Optics and Optical Engineering, University of Science and Technology of China
AP2022-2022-000035	Study on fabrication and nonlinear frequency conversion of micro/nano photonic devices based on the film lithium niobate on insulator Congliao Yan¹:Sheng Zhao¹:Shaoqian Wang¹:Sha Wang¹* 1.Sichuan university
AP2022-2022-000036	Study on Performance of Multi-user MRR Laser Communication in Atmospheric Turbulence Fading Gaosi Li ^{1*} 1.Beijing Institute of Space Long March Vehicle
AP2022-2022-000047	1030 nm Multilayer Oxide Aperture VCSELs with 25 GHz Modulation Bandwidth and 40 Gb/s NRZ Transmission Wang Yanjing 1.The State Key Laboratory of Luminescence and Application, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
AP2022-2022-000048	Optical characterization and morphology analysis of 3d polymer x-ray lens through confocal microscope Rilond Pattia Matital*:Danila Anatolievich Kolymagin¹:Denis Alexievich Shcherbakov¹:Dmytro Anatolievich Chubich¹: Alexei Grigorievich Vitukhnovsky¹:² 1.Moscow Institute of Physics and Technology;2.Lebedev Physical Institute, Russian Academy of Sciences
AP2022-2022-000072	The influence of light source linewidth on power spectrum of four light coherent mixing signal Jianying Ren ^{1*} 1.Beijing Institute of Tracking and Telecommunications Technology
AP2022-2022-000074	Generation of multi-band reconfigurable microwave waveforms based on dual-chirped fiber combs xiong wenhao ¹ 1.Beijing University of Technology
AP2022-2022-000075	Vector modes beyond Orbital angular momentumCarmelo Rosales-Guzman ^{1*} 1.Centro de Investigaciones en Óptica, A.C.

AP2022-2022-000085	Experimental scheme design of ultrafast FEL generation based on SXFEL Yaozong Xiao¹;²:Chao Feng¹;³*:Hao Sun¹;²:Bo Liu¹;³ 1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800;2:University of Chinese Academy of Sciences, Beijing 100049;3.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210
AP2022-2022-000099	High-gain free-electron laser with orbital angular momentum seeded by an x-ray regenerative amplifier Hao Sun¹,²:Chao Feng³*:Yaozong Xiao¹,²:Bo Liu³* 1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences;2.University of the Chinese Academy of Sciences; 3.Shanghai Advanced Research Institute, Chinese Academy of Sciences
AP2022-2022-000108	Transparent Realization of Rhombohedral PMN-PT single crystal and excellent electro-optical properties Yiyang Wen ¹ ;He Chongjun ^{2*} :Deng Chengguang ³ 1.Nanjing University of Aeronautics and Astronautics;2.Chongjun He,Associate Professor,Nanjing University of Aeronautics and Astronautics;3.Tsinghua University
AP2022-2022-000117	Tuable autofucsing propagation and trapping forces of Peacey Airy beams Yi Liang1* 1.Guangxi University
SC3. Nanop	photonics and optical computing
AP2022-2022-000020	Near-field manipulation of Tamm plasmon polaritons Nannan LI ¹ ;Fu Feng ^{1*} 1.Shenzhen University
	Second-harmonic generation from singular plasmonic system

SC3. Nanop	hotonics and optical computing
AP2022-2022-000020	Near-field manipulation of Tamm plasmon polaritons Nannan Ll¹;Fu Feng¹* 1.Shenzhen University
AP2022-2022-000025	Second-harmonic generation from singular plasmonic system Yunfei Zhang¹;chen Wei¹;fuhua Gao¹;Cristian Ciraci²;Fan Yang¹ 1.College of physics, Key Laboratory of High Energy Density Physics and Technology of the Ministry of Education, Sichuan University;2.Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies
AP2022-2022-000029	Ultra-high dynamic extinction ratio silicon optical modulator for distributed optical fiber sensing Zhuo Cheng ^{1*} 1.Research Center for Optical Fiber Sensing, Zhejiang Lab
AP2022-2022-000039	Longitudinal Bifocal Metalens Design Based on Deep Learning and Genetic Algorithm Wang Fang¹;Shu Xuewen¹* 1.Huazhong University of Science and Technology
AP2022-2022-000042	Identification of distorted optical signals based on reservoir computing Xiaowei Dong ¹ :Xian Wang ¹ 1.North China University of Technology
AP2022-2022-000052	Comparative analysis of two models for polariton in thin film: finite thickness film and surface current sheet Chen Shuo¹;Wu Xiaohu²*;Fu Ceji¹* 1.Peking University;2.Shandong Institute of Advanced Technology
AP2022-2022-000055	Photonic Nanolaser with Extreme Optical Field Confinement Yang Liu ¹ ·Yang Liu ¹ ·Yang Liu ¹ · 1.zhejiang University
AP2022-2022-000056	Effect of mirror quality on the optical properties of plasmonic nanoparticle-on-mirror nanocavities Zhenxin Wang¹:Pan Wang¹* 1.College of Optical Science and Engineering Zhejiang University
AP2022-2022-000058	Jones matrix inverse design and vectorial multi-focusing metalens for compact polarization imaging Fengjun Li¹;Zhiqiang Wang¹;Xiangping Li¹;Zilan Deng¹* 1.Jinan University
AP2022-2022-000060	The Generation of Axial Multiplane Optical Angular Momentum for Optical Encrypted Communication Heng Li¹:Peng Shi¹:Luping Du¹:Xiaocong Yuan¹* 1.Shenzhen University
AP2022-2022-000084	Metasurface chirality and polarization optics Zi-Lan Dengl*:Xiangping Li ¹ 1.Jinan University

AP2022-2022-000086	Ultra-high-efficiency Tunable Silicon Photonic Filter Hongyuan Cao¹;Huan Li¹;Daoxin Dai¹* 1.Zhejiang University
AP2022-2022-000129	Optical pulling of dielectric particles with non-paraxial Bessel beams through Pancharatnam-Berry metasurface Xinyu Huang¹:Yaokun Shi¹:Jianing Qin¹:Zhe Shen¹* 1.School of Electronic and Optical Engineering, Nanjing University of Science and Technology
AP2022-2022-000132	Generation of optical chains by phase-modulated radially polarized beams based on polarization-insensitive metalenses Shijie Huang¹;Chen Xu¹;Junhao Chen¹;Junxin Chen¹;Zhe Shen¹* 1.School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing
AP2022-2022-000137	The new origin of orbital angular momentum based on catastrophe theory 娜娜 刘! 1.广西大学

SC4. Sensing and imaging

AP2022-2022-000004	Data transmission with up to 100 orbital angular momentum modes via commercial multi-mode fiber and parallel neura networks Jia An Gan¹; Fu Feng²* 1.Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University; 2.Shenzhen University
AP2022-2022-000010	Adaptive Extended Kalman Filter Based on SOA Algorithm for UAV Attitude Solution Guoqing Zhou ^{1*} ;Tingsheng Wu ¹ 1.Guilin University of Technology
AP2022-2022-000011	Remote Sensing of Atmospheric Compositions based on Ground-based High-Resolution Fourier Transform Infrared (FTIR) Spectrometry Hao Yin¹-²:Youwen Sun¹* 1.Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences;2.University of Science and Technology of China
AP2022-2022-000012	Planar-lens-based Reflective Confocal Microscopy with Sub-diffraction-limit Resolution Kun Huang ^{1*} 1.University of Science and Technology of China
AP2022-2022-000013	A Sparse Sampling Method in the Two-dimensional Spatial Domain for Sheared-beam Imaging Receiving System Minglai Chen ^{1,2,3*} ,Caiwen Ma ^{1,2,3*} ,Xiujuan Luo ^{1,2,3} ,Hui Liu ^{1,2,3} ,Yu Zhang ^{1,3} ,Zelin Yue ^{1,2} ,Jing Zhao ^{1,2} 1.Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences;2.University of Chinese Academy of Sciences;3.Key Laboratory of Space Precision Measurement Technology, Chinese Academy of Sciences
AP2022-2022-000015	Black-box optimization of an unshielded RF atomic magnetometer Han Yao¹,Benjamin Maddox¹,Ferruccio Renzoni¹* 1.University College London
AP2022-2022-000017	Research on retrieval of sulfur dioxide in volcanic region from EMI- Yuanyuan Qian ^{1*} 1.Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences
AP2022-2022-000018	Analysis of vertical distribution differences of global stratospheric ozone based on weighted multiplication algebraic algorith Ziqiang Xu ^{1*} 1.Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences
AP2022-2022-000019	Micrometer-resolution 3D imaging Lidar based on metalens with strong chromatic dispersion Lu Wang ^{1,2} ,Xin Wang ^{1,2*} 1.School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081;2.Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081
	High-sensitivity biochemical sensing with fine spin structure in optical skyrmion

1.Institute of microscale optoelectronics, Shenzhen University;2.Shenzhen University

Xinxin Gou¹;Shi Peng²;Xiaocong Yuan²*

AP2022-2022-000021

AP2022-2022-000024	Detecting small variation rate of the refractive index based on OAM interferometry and time-frequency analysis Shuimei Wu ¹ ;Anting Wang ^{1*} 1.Department of Optics and Optical Engineering, University of Science and Technology of China
AP2022-2022-000027	Influence of pump power and beam diameter on the transverse relaxation rate of noble gas nuclear spins in the nuclear magnetic resonance gyroscope Yunkai Mao¹,Boxian Dong¹,Jianli Li¹,²²,Zhanchao Liu¹,²,Shaofeng Jie¹ 1.School of Instrumentation and Optoeletronic Engnineering, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing, 100191, China;2.Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
AP2022-2022-000028	Ultracompact angular displacement sensor based on Talbot effect of optical microgratings Zhiyong Yang ^{1*} :Chenguang Xin ^{1*} 1.North University of China
AP2022-2022-000032	Fast orthorectification method based on multi-pixel chunking Guoqing Zhou ^{1*} :Haoran Li ¹ :Qingyang Wang ¹ 1.Guilin University of Technology
AP2022-2022-000038	Visualization of hydrogen jet using laser beam profile deformation and background oriented schlieren yang miao¹* 1.beijing university of technology
AP2022-2022-000040	Light scattering control with two-step focusing method based on neural networks and multi-pixel coding Minyu Fan ¹ , Jie Zhu ¹ , Shutong Wang ¹ , Yongjie Pu ¹ , Huinan Li ¹ , Shouhuan Zhou ¹ , ² , Sha Wang ^{1*} 1. Sichuan University; 2. North China Research Institute of Electro-Optics
AP2022-2022-000044	3D Imaging of Multi-Target Environment Based on Streak Tube Imaging LIDAR Zelin Yue ^{1,2,3*} :Xiujuan Luo ^{1,2,3*} :Ping Ruan ^{1,2,3*} :Hui Liu ^{1,2,3} :Yu Zhang ^{1,3} :Minglai Chen ^{1,2,3*} :Jing Zhao ^{1,2,3} 1.Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences;2.University of Chinese Academy of Sciences;3.Key Laboratory of Space Precision Measurement Technology, Chinese Academy of Sciences
AP2022-2022-000045	Detection of low-frequency underwater sound by self-interference of a reflection laser beam yang miao ^{1*} ;hong wei ² ;wang zeng ³ ;di wu ⁴ ;zhang lizhen ⁴ ;jianmin miao ⁵ 1.beijing university of technology;2.Huazhong University of Science and Technology;3.China Academy of Launch Vehicle Technology;4.Shanghai Ocean University;5.Sun Yat-sen University
AP2022-2022-000046	Liquid surface shape measurement based on a coherent optical fringe metrology technique yang miaol*;jun chen²;xiangyin zhang¹;zeng wang³;miao li* 1.beijing university of technology;2.Beijing Children's Hospital;3.China Aerospace Science and Technology Corporation; 4.Beijing Polytechnic College
AP2022-2022-000049	Design and implementation of a fast circular scanning imaging optical system Xiaohu Guo¹ 1.China North Vehicle Research Institute
AP2022-2022-000059	Pattern recognition of gait signals using -OTDR Fanran Meng¹;Wenxiang Zhang¹;Guo Zhu¹;Xian Zhou¹;Fei Liu¹ 1.University of Science &Technology Beijing
AP2022-2022-000061	Wavelength scanning spectroscopic gas detection based on laser frequency comb enabled by phase-shifted fiber Bragg grating (PS-FBG) Zhiwei Liu¹;Guofeng Yan¹*;Junqiu Long¹;Yunjiang Rao¹ 1.Research Center for Optical Fiber Sensing, Zhejiang Laboratory, Hangzhou
AP2022-2022-000066	Optical Remote Sensing Building Detection Method Based on Improved Segformer li meilin¹* 1.The PLA Information Engineering University
AP2022-2022-000068	Water extraction method based on optical image in Dengzhou area of Henan Province li meilin ^{1*} 1.The PLA Information Engineering University
AP2022-2022-000092	Real-time High Dynamic Range Imaging by Using Polarized Camera Liuzheng Gao¹.²:Banglei Guan¹*:Ang Su¹*:Zhang Li¹:Qifeng Yu¹ 1.National University of Defense Technology:2.Jiuquan Satellite Launch Center

AP2022-2022-000107	Generation of Vortex Beam Using Golden Spirals Qi Zhao¹;²*:Hao Zhang²;Yuanjie Yang¹ 1.University of Electronic Science and Technology of China;2.Southwest Institute of Technical Physics
AP2022-2022-000166	Recognizing the topological charge of orbital angular momentum beams under atmospheric turbulence by linear photodiode array detectors with convolutional neural networks Jie Xue ^{1,2} ,Bing Zhu ^{1,2*} 1.Department of Electronic Engineering and Information Science, University of Science and Technology of China; 2.Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences
AP2022-2022-000030	A feature extraction and matching method in large parallax scenes guoqing zhou ^{12*} ;jin tian ² 1.Guangxi Key Laboratory of Spatial Information and Geomatics;2.Guilin University of Technology

实验室简介_

之江实验室成立于2017年9月6日,坐落于杭州城西科创大走廊核心地带,是浙江省委、省政府深入实施创新驱动发展战略、探索新型举国体制浙江路径的重大科技创新平台。实验室以"打造国家战略科技力量"为目标,由浙江省人民政府主导举办,以实验室为主体,充分融合省内顶尖高校与龙头企业创新优势,吸纳国内外优质创新资源形成创新网络,主攻智能感知、人工智能、智能计算、智能网络和智能系统五大科研方向,推进建设国际一流的智能感知研究与实验中心、国际一流的人工智能创新中心、国际一流的智能科学与技术研究中心和全球领先的智能计算基础研究与创新高地。

■ 装置平台 。

智能计算数字反应堆重大科技基础设施

新一代工业控制系统信息安全大型实验装置

多维智能感知中枢重大科技基础设施

超高灵敏极弱磁场和惯性测量重大科技基础设施

计算与数据

微纳加工

声学 实验室

室

材料 实验平台

高通量纳米光刻 AI莫干山超高灵敏 与成像装置实验室 精密测量实验室

智能机器人运动 性能测试评估平台

科研成果

智能计算数字反应堆操作系统

"之江盘古"人工智能超级计算机

基于光动量效应的极弱力测量装置

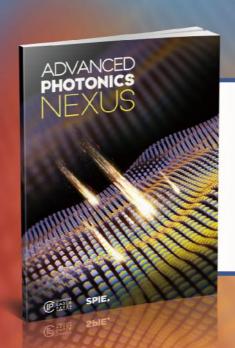
高通量纳米光刻成像装置

多中心协同的生物医学智能信息平台

"之江天枢"人工智能开源平台

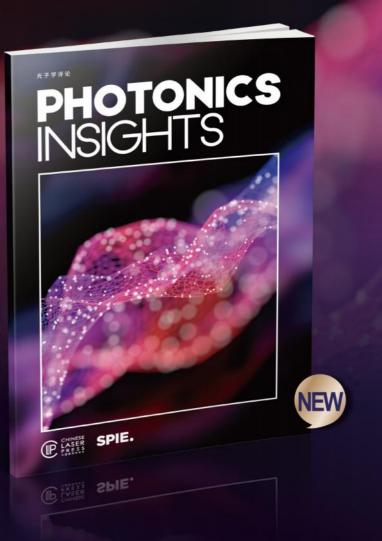
ADVANCED PHOTONICS

13.582


Read cutting-edge papers

from leaders in optics and photonics

Submit your best work


to Advanced Photonics

Sister journal to *Advanced Photonics*Open for submission and fast transfer
Gold Open Access (APC waived through 2022)

PHOTONICS INSIGHTS

Photonics Insights, a high-quality, peer-reviewed, diamond open access (free for authors and readers), quarterly published journal, will feature review articles presenting the current status of a given topic, with background, research progress, conclusions, and possible future developments.

Photonics Insights publishes high-quality, comprehensive review articles, rapid review articles and perspectives covering the whole area of optics and photonics and relevant interdisciplinary topics.

Co-Editors-in-Chief

Lei ZhouFudan University
China

Din Ping TsaiCity University of Hong Kong
China

To be launched in 2022

数据库收录: EI ESCI Scopus CSCD等

+ 专题刊

生物医学光子学

1 征稿范围

包含但不限于 以下征稿范围

- 光与生物组织相互作用
- 超分辨光学成像
- 神经光子学与光遗传学
- 光学诊断与治疗
- 生物光学传感与调控
- 组织光学光谱与成像
- 微纳生物光电功能材料
- 激光医学及其临床应用

处理周期

🍘 "生物医学光子学"微信交流群

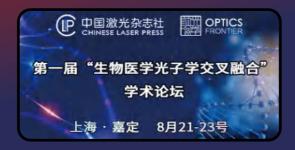
共享: 学术资源 最新资讯 期刊发文 投稿咨询

扫描二维码添加编辑微信,申请入群 (备注:姓名+学校+生物医学光子学)

少 投稿方式

通过《中国激光》官网"作者中心"投稿。投稿模板 及要求同《中国激光》一致,可扫描右侧二维码, 查看和关注"生物医学光子学"专题刊网页。

第五届中国出版政府奖"期刊奖提名奖



中国科技期刊 卓越行动计划。

--- 会议官网 ---

www.opticsjournal.net/Meeting/BPC2022.cshtml | Q

百种中国杰出学术期刊

中国精品科技期刊

电 话: 021-69917051 邮 箱: shenyajie@siom.ac.cn 联系人: 沈雅捷

中国百强报刊

Acta Optica Sinica

数据库收录: EI ESCI CA AJ INSPEC Scopus 等

主编

龚旗煌 院士 北京大学

执行主编

赵建林 教授 西北工业大学

包含但不限于以下征稿范围

征稿范围

- 大气与海洋光学
- 原子与分子物理学
- 相干与统计光学
- 探测器
- 衍射与光栅
- 光纤光学与光通信
- 傅里叶光学与光信号处理
- 几何光学
- 全息
- 图像处理
- 成像系统
- 仪器,测量与计量

- 集成光学
- 激光器与激光光学
- 机器视觉
- 材料
- 医用光学与生物光学
- 显微
- 非线性光学
- 光计算
- 光数据存储
- 光学设计与制造
- 光学器件
- 表面光学

- 光电子学
- 物理光学
- 量子光学
- 谣感与传感器
- 散射
- 光谱学
- 薄膜
- 超快光学
- 视觉, 色彩与视觉光学
- X射线光学
- 光学其他领域
- 快报

处理周期

初审 1天 24天 56天

投稿方式

通过《光学学报》官方网站的投稿系统 进入"作者中心",按系统要求填写信 息,上传稿件。投稿模板及要求请参见 官网作者服务版块。

期刊官网

中国精品科技期刊

邮 箱: aos@siom.ac.cn

中国最具国际影响力学术期刊

原"高功率激光科学与工程"微信公众号

拟道

激光物理

激光技术

激光应用

最新进展

主编评论

作者评论

编辑评论

您来评论

人华 "联系编辑"

要合作?

论文投稿?

要参会?

要应聘?

唯一官方微信公众号

特色栏目

五分钟 光学

光学 青年 播光

光学 大家 专栏

中国激光杂志社 CHINESE LASER PRESS

集成电路是现代工业的基础。光刻机是集成电路制造的核心装备,其技术水平决定了集成电路的集成度。

几十年来,光刻机曝光波长从 436 nm 可见光波段减小到 193 nm 深紫外波段,再到目前最短的 13.5 nm 极 紫外波段。投影物镜的数值孔径从初期的 0.28 增大到干式光刻机的 0.93, 再到浸液式光刻机的 1.35。利用光学 邻近效应校正、光源掩模联合优化、多重图形等分辨率增强技术,光刻工艺因子已突破理论极限。光刻机技术 与光刻技术的不断进步,支撑着集成电路不断向更小技术节点发展。不断涌现的新技术、新工艺、新材料、新 设备使得光刻技术水平不断提升,集成电路特征尺寸不断减小,目前已逼近尺寸微缩的物理极限。

为集中展示国内外光刻技术领域的最新研究进展,促进学术交流,《激光与光电子学进展》推出"光刻技术" 专题。本专题以光刻机应用为牵引,汇聚了光学系统、工件台、掩模台、调焦调平等光刻机核心系统的最新研究进展, 涵盖了计算光刻、光源、光刻胶等领域的最新研究成果。另外,对光刻机关键零部件与单元技术的最新研究进 展也进行了选录。本专题还收录了定向自组装光刻等前瞻性技术的综述论文。最后,对光刻技术 60 年的发展历 程进行了回顾。本专题的出版得到了领域内众多知名专家的积极响应,共收录 30 篇高质量论文。由于光刻技术 涉及多学科、众多领域,考虑到读者范围广,30篇论文均为综述文章。

专题官网

专题微信

中国科学院上海光学精密机械研究所

王向朝 研究员

韦亚一 研究员 中国科学院微电子研究所

邱建荣 教授 浙江大学

光刻机运动台控制方法研究进展

封面

文章

联系人: 张雁

章文面性 芯片制造语境下的计算光刻技术 作者: 施伟杰, 俞宗强, 蒋俊海

车永强, 李思坤 第一单位: 东方晶源 微电子科技 (北京) 有限公司

作者:姜龙滨,丁润泽

内封面文章

丁晨阳,杨晓峰,徐云浪 第一单位: 复旦大学

封底文章

极紫外光刻光源的研究进展及 发展趋势

作者: 林楠, 杨文河, 陈韫懿, 魏鑫, 王成, 赵娇玲, 彭宇杰,

新光 場 光电子学进展

极紫外(EUV)光刻胶的研发

作者:郭旭东,杨国强

第一单位:中国科学院

激光场光电子学进展

生物医学 光子显微与多模态成像

59卷第6期 | 2022年3月

专题官网

特邀 组稿

关人员提供很好的参考。

张镇西 教授

西安交通大学

从上世纪至今,光学显微技术为生命科学和医学研究带来了革命性的进步。每一次显微技术的突破,都给生

物医学研究带来里程碑式的发展。近年来,生物医学光子学应运而生,其研究内容包括:在生命科学领域,在分子水

平上对生物组织结构与功能进行监测与调控;在医学研究领域,以非侵入的方式,实现宏观与微观尺度分子水平的

疾病探测、诊断和治疗。生物医学光子学近年的发展重点之一是将各种复杂的光学系统和技术更加深入地应用于

生命健康的图像识别及多模态成像中,实现宏观与微观尺度的疾病探测、诊断与治疗。特别是在显微成像和活体小

动物成像技术上,其成像性能越来越高,成像质量越来越好,成像速度越来越快。因此,生物医学光子显微与多模态

光电子学进展》推出"生物医学光子显微与多模态成像"专题, 汇聚了生物医学光子显微、生物光学传感技术、生物

光学测量技术、跨模态与多模态成像技术4个主题方向的研究成果和最新进展。共收录31篇高质量论文,其中包括

15篇特邀综述和11篇特邀研究论文。相信本专题的出版将为从事生物医学光子显微与多模态成像技术研究的相

为集中展示我国生物医学光子显微与多模态成像技术的最新研究进展,推动相关领域向纵深发展,《激光与

成像技术的发展,在生命科学探索、临床医学诊断、治疗及功能监测等领域,都具有非常重要的应用前景。

魏勋斌 教授 北京大学

季敏标 教授 复旦大学

斯科 教授 浙江大学

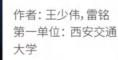
专家

封面 文章

联系人: 张雁

浩淼太虚生命奇, 驭光求索此中意。 光子婆娑螺旋舞, 江风明月一芯析。

总封面解读



封底文章 近红外二区荧光活体生物成像 技术研究进展

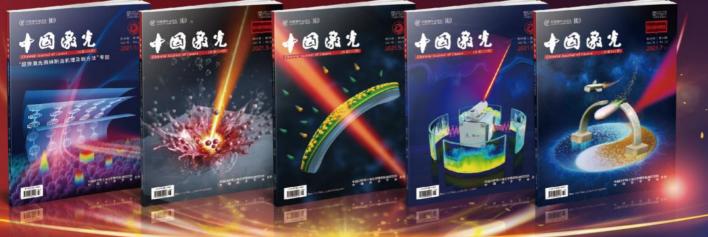
作者: 冯哲, 钱骏 第一单位: 浙江大学

近红外二区激发多光子荧光成像

内封面文章

高光谱相干拉曼散射技术及其 应用

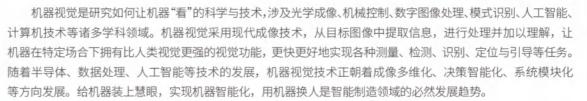
作者: 吴凡,李商羽, 洪维礼,岳蜀华,王璞 第一单位: 北京航空



CHINESE JOURNAL OF LASERS 半月刊

"第五届中国出版政府奖"期刊奖提名奖

"中国科技期刊卓越行动计划"入选期刊


特色专题

激光场光电子学进展

₩ 特色专题

机器视觉技术及应用。

59卷第14期 | 2022年7月

目前,中国正成为机器视觉发展最活跃的地区之一。为集中展示国内外机器视觉技术在原理、方法及应用 等方面的最新研究进展,促进多学科的交叉融合,推动相关领域向纵深发展,《激光与光电子学进展》推出"机 器视觉技术及应用"专题,共收录 29 篇高质量的论文,其中包括 11 篇特邀综述和 13 篇特邀研究论文,内容涵 盖了视觉照明与成像技术、视觉系统建模与优化方法、视觉处理技术、视觉系统集成及应用等方面的研究成果 与最新进展。

专题官网

专题微信

国防科技大学

于起峰 院士

卢荣胜 教授 合肥工业大学

刘晓利 教授 深圳大学

王程 教授 厦门大学

李璋 研究员 国防科技大学

文章

封底文章

基于光线模型的成像系统标定与 三维测量进展


基于虚拟相机的位姿估计研究

作者: 刘晓利, 杨洋, 喻菁,缪裕培,张小杰, 彭翔, 于起峰 第一单位: 深圳大学

作者. 李安虎, 邓兆军,

刘兴盛, 陈昊

内封面文章

基于分段阶梯相位编码的三维形 貌测量方法

作者: 汪俊霖, 张启灿 吴周杰 第一单位:四川大学

基于偏振成像的工业视觉及其关 键技术

作者: 罗海波, 曹军峰 盖兴琴, 丁庆海 第一单位:中国科学院

中国激光、光学、光子学领域 专业出版与知识服务

Lasers, Optics, Photonics

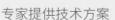
Publishing, Conferences, Training, Awarding, Exhibition

www.clp.ac.cn

浸光学 | 🍖 微信公众号

欢迎爆料 | 投稿请发送 lvxuan@siom.ac.cn

光电实验系统搭建线上技术服务平台


在这里,总能找到一套符合您实验需求的光电实验系统解决方案

www.yiguangdian.cn

• 提供整套技术方案

仪器设备采购

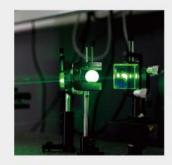
系统搭建与调试

协助技术难点探讨

• 合作模式

- 您采购仪器设备,我们提供系统搭建调试服务
- 您采购仪器设备,我们提供技术方案和系统搭建调试服务
- 我们提供技术方案、仪器设备采购及系统调试服务

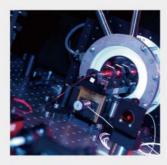
用户

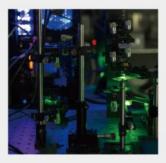


专家智库

◀ 平台反馈

◀专家讨论


• 业务范围


超快激光微纳加工

光场调控与传输

空间光通信

生物光子学

上海意桐光电科技有限公司

想要了解报告的更多信息,请下载汇同会议系统APP。 扫描下方二维码进行APP的下载:

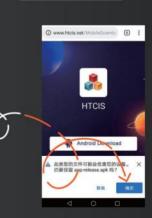
IOS系统:

方法一:扫描二维码下载 方法二:登录到APP Store, 搜索"汇同会议系统"

安卓系统:

方法一:扫描二维码下载

安卓系统安装步骤


"扫一扫"二维码, 点击右上角"…"


点击"在浏览器 打开",进入汇 同会议系统 APP下载页面

点击"Android Download"

点击确认, 允许 来自此来源的 应用

"立即下载", 记得提前打开 wifi哦

点击"安装", 待 成功后即可成 功体验APP

