An efficient high power femtosecond laser based on periodic-layered-Kerr-media nonlinear compression and a Yb:YAG regenerative amplifier

Jie Guo,1 Zichen Gao,1,2 Di Sun,1,2 Xiao Du1,2, Yongxi Gao1,2, and Xiaoyan Liang1

1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract We demonstrate an efficient ultrafast source with 195 fs pulse duration, 54 W average power at 200 kHz repetition rate, and near diffraction-limited beam quality. The compact setup incorporate a thin disk Yb:YAG regenerative amplifier (RA) and a subsequent nonlinear pulse compression stage with periodic layered Kerr media (PLKM), which is one of the multiple-thin-solid-plate schemes based on nonlinear resonator theory. In virtue of the formation of quasi-stationary spatial soliton in PLKM, the near diffraction-limited beam quality of RA remained almost undisturbed after post-compression. The nonlinear pulse compression module is simple and efficient with a transmission of 96%. To the best our knowledge, for pulse energy over 200 μJ, this is the highest output power reported for the multiple-thin-solid-plate scheme. This source manifests an economical combination to mitigate the bandwidth limitations of Yb-based high power chirped pulse amplifiers.

Key words: post-compression; self-phase modulation; high power ultrafast source
1. Introduction

The combination of high quantum and Stokes efficiency of Yb-based lasers with state-of-the-art fiber, Innoslab and thin-disk architectures facilitate efficient and power scalable femtosecond lasers [1-5]. However, the Yb-doped gain matrices do not exhibit sufficiently large gain bandwidth to provide high gain for pulses shorter than 300 fs. Due to gain narrowing, workhorse Yb-doped crystals such as Yb:YAG and Yb:Thulium typically generate pulses in the range of 400 fs to 1 ps pulse duration after chirped pulse amplification. To generate even shorter pulses, other strategies proved viable, such as adoption of broader gain bandwidth disordered media [6, 7], a combination of gain media with slightly shifted gain spectrum [8-10] or spectral coherent synthesis [11, 12]. Nonetheless, the disordered media display poor thermal conductivity while the other two schemes suffer from complexity. Nonlinear spectral broadening by self-phase modulation (SPM) during propagations in regenerative and multipass amplifiers are impressive alternatives, which, however, demand elaborated control [13-16].

In addition to the above techniques implemented during constructions of ultrafast lasers, another route to achieve shorter pulse durations is through the well-known temporal compression after compressor approach (CafCA) or post-compression technique [17-19]. The basic process incorporates nonlinear spectral broadening and chirp removal with dispersive elements. No laser system alteration is needed and a high efficiency can be guaranteed if implemented properly. Among the various techniques based on the optical Kerr-effect or photoionization for spectral broadening, the gas-filled multi-pass cell spectral broadening (MPCSB) and the multiple-thin-solid-plate (MTSP) schemes now are widely adopted and have achieved impressive results [20-23]. The MPCSB method is characterized with almost unperturbed beam quality and spectral homogeneity across the beam profile but suffers from pointing fluctuations and delay [24]. The MTSP technique avoids the catastrophic collapse caused by the self-focusing effect in bulk medium with strategically arranged thin plates. It is more compact, flexible and economical, applicable for peak power far beyond the medium’s self-focusing critical power and for pulse energies up to millijoule level with robustness and reproducible performance [25]. Early multiple-thin-solid-plate configurations were usually organized empirically, in which considerable losses caused by conical emission usually arose [26]. The conical emission also results in the temporal or spatial (or even both) quality degradation. In some cases requirements for special designed chirped mirrors or pulse shapers were indispensable [20, 26]. As a relatively systematical study, the concept of quasi-stationary spatial solitons generation in periodic layered Kerr media (PLKM) stands out as a practical strategy [27, 28]. As the term periodic indicates, the distance between neighboring plates are the same in this configuration. Specifically, a layer of solid thin plate with thickness of l and a layer of free space with a length of L was taken as a period. The repetitive propagation of an intense beam in PLKM was regarded as a resonator with intensity-dependent non-spherical mirrors. Thus, the Fresnel-Kirchhoff diffraction (FKD) integral was introduced in this theory to identify the self-consistent stationary modes. The PLKM arrangements improved the spatial quality and supported nonlinear light-matter interaction during a rather long distance even under tight focusing conditions [28]. The integration of PLKM device and Yb-based high power chirped pulse amplifiers will favor an ultrafast source with high efficiency and great beam quality.

Correspondence to: No. 390 Qinghe Road, Jiading, Shanghai, China. Email: liangxy@siom.ac.cn
In this contribution, we present a compact and efficient ultrashort laser source, which comprised a Yb:YAG regenerative amplifier and a subsequent close-to-lossless periodic-layered-Kerr-media-based nonlinear pulse compression stage. The nonlinear pulse compression stage featured a transmission of 96%, excellent beam quality and spectral homogeneity across the beam profile. Compared with the setup described in reference [26], no need to filter out the conical emission or apply custom-tailored chirped mirrors in our work. The absence of conical emission intrinsically ensured the high efficiency and excellent beam quality simultaneously. To the best our knowledge, for pulse energy over 200 μJ, this is the highest output power reported for the multiple-thin-solid-plate scheme. This configuration successfully compensated the gain bandwidth limitation of Yb:YAG regenerative amplifier. The final output pulse duration was 195 fs with average power of 54 W at 200 kHz repetition rate, while the pulse duration directly from the grating-based compressor of the chirped pulse amplifier (CPA) system was 534 fs. These results underline the benefits of this combination. The demonstrated source is promising for further power scaling and compression to sub-50 fs to drive high field physical processes and bright secondary radiation at high average power.

2. Experimental setup

The schematic of the experimental setup is illustrated in Fig. 1. The Yb:YAG thin disk regenerative amplifier (RA) was similar to our previous work [29]. Different from the system in reference [29], the Pockels cell was a double-BBO type with a total length of 40 mm and a clear aperture of 3.6 mm × 3.6 mm (4 mm × 4 mm total area) and the pump spot size on the disk was 3 mm. Limited by the high voltage pulse width of the Pockels cell, the roundtrip number of the regenerative amplifier was set as 15. Besides, the grating compressor is based on a single transmission grating and some folding mirrors. When seeded with 100 μJ pulse energy, an output energy of 330 μJ at 200 kHz was generated at the pump power of 150 W. The compressed pulse energy was then reduced to 280 μJ and the beam quality factor was characterized as $M^2=1.19×1.24$ (Ophir BeamSquared), as shown in Fig. 2. The output spectrum bandwidth was about 3.6 nm (FWHM), revealing a strong gain-narrowing phenomenon. The pulse duration was measured to be 534 fs with pedestals assuming a Lorentz pulse shape (shown in Fig. 4(b) of the following section), larger than the bandwidth-limited one (factor ~1.2). This is attributed to the nonlinear effects of the frontend, which is also not bandwidth-limited with 325 fs pulse duration at 8 nm bandwidth. On the contrary, the nonlinearity accumulated in the RA is negligible (about 0.11 rad).

The PLKM setup for nonlinear spectral broadening consisted of six periods. Each period includes a layer of sapphire with a fixed nominal thickness of 1 mm and a subsequent layer of free space with a length of 40.8 mm. The PLKM device was designed as the following procedures. First, the nonlinear phase on each solid thin plate was set as 1 rad and the effective beam radius on each plate was decided. The value was chosen to limit the nonlinear phase per plate and fully exploit the plates (six pieces) available at the experiment. Then, the Fresnel-Kirchhoff diffraction (FKD) integral including the nonlinear phase induced by self-phase modulation (SPM) was numerically solved by means of Fox-Li iteration, resulting in the determination of stationary modes [28, 30]. When normalized amplitude of the incident optical field is assumed as U_1, the amplitude after propagating through a unit of the nonlinear resonator and right before the next period can be calculated according to Ref. [28],
\[U_2(\rho) = -2\pi je^{i\rho \rho'} \int_0^\infty U_1(\rho') e^{i h[i U_1(\rho')]} \cdot e^{i \rho' \rho^2} \cdot J_0(2\pi \rho' \rho) \rho' d\rho' \]

where \(\rho \) and \(\rho' \) are the radial coordinates rescaled by \(\sqrt{\lambda L} \) and \(J_0 \) is the zeroth-order Bessel function. In this Equation, \(b \) is the nonlinear phase given by \(b = \frac{2\pi}{\lambda} n_2 I_0 \), in which \(n_2 \) is nonlinear refractive coefficient and \(I_0 \) is the field intensity. After convergence, the Fresnel-number-like radius squared parameter \(\omega^2/\lambda/L \) was found to be 0.78 when 86.5% energy was contained, in which \(\omega \) is beam radius and \(\lambda \) is central wavelength 1030 nm.

The sapphire plates were placed at the Brewster angle to suppress the reflection loss to <0.5%. The first sapphire plate was placed at the beam focus and the peak intensity on the surface of the first plate is 0.84 TW/cm². A set of dispersive mirrors (supporting a bandwidth of 40 nm) with a total group delay dispersion (GDD) of -15370 fs² compensated for the residual spectral phase.
3. Nonlinear compression results and discussions

The transmitted average power behind the nonlinear compression stage was 54 W, corresponding to an efficiency of 96%. This high efficiency is attributed to the loss-less nature of PLKM and dispersive mirror compressor. Figure 3(a) shows the power spectra measured with an integrating sphere and a multimode fiber at the output of RA and after the PLKM stage, respectively. Spectra measured after different numbers of sapphire thin plates is illustrated in Fig. 3(b). The broadening to the input spectrum is slightly asymmetrical. And the amplitude of spectral broadening at the short-wavelength part is a bit larger than the long-wavelength part, indicating the emergence of a weak self-steepening effect. The oscillations with large amplitude near the center wavelength was caused by the temporal pedestals of the input pulse [17], which stems from the nonlinear effects of the frontend. Additionally, the spectra after the plates were modulated. Its influence upon the pulse stability were also confirmed. The fluctuation of pulse energy was 1% RMS and the variation of pulse duration was within 5%. This spectral modulation will be improved with an optimized frontend in the near future.

The broadened spectrum with six plates spans from 1020 to 1040 nm (-20 dB), supporting a 140 fs transform limited pulse. The autocorrelation trace characterized at the final output was shown in Fig. 4(a), indicating a pulse duration of 195 fs assuming a Gaussian pulse shape, which
is, however, quite clean without pedestals, unlike the input pulse (Fig. 4(b)). This is presumed that SPM of the input nonlinearily chirped pulse produced a TOD with the opposite sign to the initial TOD [31]. These results verified that the nonlinear compression stage realized contrast improvement and spectral broadening simultaneously. The transform-limited pulse duration was not achieved, presumably due to the residual high-order spectral dispersion, which remained uncompensated with the dispersive mirrors. The residual high-order spectral dispersion originated from both frontend and the self-steepening effect of nonlinear compression stage [31, 32].

The spatial quality of the nonlinear compression stage was also examined. The beam quality factor was measured to be $M^2=1.40 \times 1.38$, which was shown in Fig. 5(a). And the homogeneity of spectral broadening was also characterized by measuring the spectra across the transverse beam profile of the final compressed beam, at the location with a beam diameter of about 12 mm. A multimode fiber was used to scan cross the profile and spectra were recorded with an optical spectrum analyzer (Fig. 5(b)). It is generally expected that nonlinear spectral broadening by free-space propagation through nonlinear medium to be inhomogeneous across the beam profile. The output beam quality and spectral homogeneity confirmed the validity of the basic scheme based on PLKM theory, that is, by restricting the nonlinear phase accumulation of each plate and regarding propagation through each period as roundtrips in a nonlinear resonator. The operation parameters are fundamentally determined beforehand, making it easy to be implemented in practice. In our experiment, only slight adjustment of distances between plates was needed. No conical emission was observed during the experiment, thus, great beam quality and high transmission efficiency were guaranteed. A small amount of remaining spatial chirp and uncompensated high-order dispersion were also shown in our results, which will be further optimized by an improved setup with modified frontend and thinner plates of nonlinear compression stage.

![Fig. 4. Measured and fitted intensity autocorrelation traces of (a) the final output pulse and (b) the output of grating compressor.](image1)

![Fig. 5. (a) Beam profile and (b) spectra across the transverse beam profile.](image2)
4. Summary

In summary, we have demonstrated a laser system delivering an average power of 54 W and pulses with 195 fs duration at a repetition rate of 200 kHz. The nonlinear compression stage helped to achieve a pulse duration well below the conventional bandwidth-limited value, enhancing the peak power of the Yb:YAG high power CPA system by 2.6 times, with great beam quality and spectral homogeneity across the beam profile. These results confirmed the potential of periodic-layered-Kerr-media-based technique for the efficient and economical compression of high average power laser amplifiers at high repetition rates. Such source presents a favorable and robust tool for novel manufacturing mechanisms and time-resolved spectroscopy experiments [33-36].

Acknowledgement

This work was supported by National Key Research and Development Program of China (2017YFB0405202), National Natural Science Foundation of China (NSFC) (62005298), and Program of Shanghai Academic / Technology Research Leader (20SR014501).

References

