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A highly sensitive carbon dioxide (CO2) sensor based on light-induced thermoelastic spectroscopy (LITES) utilizing a 
self-designed low-frequency quartz tuning fork (QTF) and a fiber-coupled multipass cell (MPC) is reported in this paper. 
The QTF with low resonant frequency of 8675 Hz and high Q factor of 11675.64 was used to improve its energy 
accumulation time and the sensor’s signal level. The MPC with fiber-coupled structure and optical length of 40 m was 
adopted to significantly increase the gas absorbance and reduce the optical alignment difficulty as well as improve the 
robustness of the sensor system. A distributed feedback (DFB), near-infrared diode laser with emission wavelength of 
1.57 µm was used as an excitation source. The experimental results showed that this CO2-LITES sensor had excellent 
linear response to CO2 concentrations. The minimum detection limitation (MDL) of this CO2-LITES sensor was obtained 
to be 445.91 ppm and it can be improved to 47.70 ppm when the integration time of the system reached 500 s. Further 
improvement methods for detection performance of such sensor were discussed.
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1. Introduction
Carbon dioxide (CO2) is one of the major greenhouse gases in the 
atmosphere. Fossil fuels [1], automobile exhaust [2], and 
industrial emissions [3] are the main sources of CO2. Increasing 
concentrations of CO2 can lead to global warming and various 
environmental problems [4], so the detection of CO2 
concentration is of great significance in air pollutant monitoring. 
In healthcare, the detection of CO2 concentration contributes to 
prevent and treat respiratory diseases [5]. CO2 detection also 
plays an important role in the field of agriculture, where the state 
of seeds can be determined by detecting the concentration of CO2 
produced by the seeds [6]. Therefore, the development of CO2 gas 
sensors with high sensitivity is essential.

So far, many types of CO2 sensors including 
electrochemical sensors [7], semiconductor sensors [8] and 
optical sensors [9] have been developed. Among them, the 
most attractive is laser spectroscopy based detection 
technique, which is employed because of its high 
sensitivity, fast response and high specificity [10-26]. In 
2002, Tittel et al. proposed the quartz-enhanced 
photoacoustic spectroscopy (QEPAS) [27], in which a 
quartz tuning fork (QTF) is used as an acoustic detector 
instead of the traditional microphone. The benefits of 
QEPAS over conventional photoacoustic spectroscopy 
include its small size and strong interference immunity 
[28-35]. However, QEPAS requires that the QTF must be 
placed in the environment of the gas to be measured, which 
means that QEPAS cannot perform non-contact 
measurements [36-38], resulting in application limitations. 
Furthermore, QEPAS technique can’t be used to detect 
corrosive gases, and to detect gas at high temperatures 
because the QTF will be oxidized or damaged in these 
cases [39,40].

To address the shortcomings of QEPAS mentioned above, 

Ma et al. first proposed light-induced thermoelastic 
spectroscopy (LITES) in 2018 [41]. In this technique, the 
laser light will be absorbed partly after passing through 
the gas to be measured, and the remaining light is 
irradiated at the root of the QTF, which makes the heat 
distribution on the surface of the QTF uneven. Due to the 
light-induced thermoelastic effect [42], the QTF generates 
a mechanical vibration, and the vibration is enhanced 
when the modulation frequency of the laser is the same as 
the resonant frequency of the QTF [43]. Ultimately, the 
vibration is transformed into an electrical signal via the 
piezoelectric effect. Demodulation this electrical signal can 
reverse the gas concentration [44,45]. LITES is a good 
solution to the shortcomings of QEPAS, as the QTF does 
not need to be in contact with the gas to be measured, 
realizing non-contact measurements. Till now, various 
gases detection based on LITES have been reported [46-54].

QTF, as the detection unit of the LITES technology, has 
a significant impact on the performance of the system [55]. 
So far, the most commonly used QTF is the commercial 
available one with a resonant frequency of 32.768 kHz. 
However, the performance of QTF is related to the energy 
accumulation time [56]. The higher the resonant frequency 
of the QTF, the shorter the energy accumulation time of 
the QTF, resulting in poor detection sensitivity. From 2014, 
Spagnolo et al. carried out a study on the optimal design of 
QTF [57,58]. By optimizing the size and shape, a low-
frequency QTF can be obtained [59], which can 
significantly increase the sensor system's sensitivity by 
serving as the detection unit in LITES technique.

Apart from QTFs, another crucial component of the 
LITES system is multipass cell (MPC), which is used to 
enhance the optical absorption. The commonly used MPC 
is composed of two concave mirrors with high reflectivity, 
and the laser beam is incident at a specific angle into the 
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MPC, which is reflected between the two concave mirrors 

Fig. 1 Simulation of CO2 absorption based on the HITRAN 2023 database. 
(a) CO2 absorption line intensity in the range of 6000-6450 cm-1; (b) CO2 
absorption line located at 6339.706 cm-1. 

several times and then ejected from the light outlet. Only 
when the MPC is incident at the proper angle will it have 
the necessary effective length. Therefore, this type of MPC 
has the disadvantage of being difficult to align optically 
[60], and the inclusion of many optical components in the 
optical alignment makes the sensor system unstable. Thus, 
in order to eliminate the shortcomings of the widely used 
MPC, this study presents a fiber-coupled MPC, in which 
the interior of the MPC is identical to that of the 
conventional MPC and the laser beam is incident into the 
MPC through an optical fiber and then out through 
another optical fiber. This design solves the problem of 
difficult optical alignment of the conventional MPC and 
improves the stability of the sensor system.

In this paper, a high sensitive CO2-LITES sensor based 
on a self-designed low-frequency QTF and fiber-coupled 
MPC was reported for the first time. The low resonant 
frequency of 8.7 kHz is beneficial to improve the signal 
level. A fiber-coupled MPC with an optical length of 40 m 
was employed, which significantly increased the gas 
absorption and also reduced the optical alignment 
difficulty and improved the robustness of the system. To 

eliminate the background noise, wavelength modulation 
spectroscopy (WMS) and the second harmonic (2f) signal 
demodulation were applied. The Allan deviation was used 
to assess the system's long-term stability.

2. Experimental setup

2.1 Selecting the CO2 absorption line

Based on the HITRAN2023 database, the CO2 absorption 
line intensity in the range of 6000-6450 cm-1 is shown in 
Fig. 1(a). This range of light interacts well with optical 
fibers with low loss, and is easily transferred via an all-
fiber system. Due to the tuning ability of the used diode 
laser, the line at 6339.706 cm-1 (1577.36 nm) was chosen as 
the target absorption line in order to achieve good 
detection performance, which is shown in Fig. 1(b).

The sensor utilized a distributed feedback (DFB) diode 
laser with an emission wavelength of 1.57 μm. The 
variation of the laser output wavelength with injected 
current at different operating temperatures can be found 
in Fig. 2(a). The relationship between the laser output 
power and injected current at different operating 
temperatures is displayed in Fig. 2(b). It is discovered that 
when the injected current increased, the laser's output 
power and wavelength rose as well. The maximum output 
power of 20.33 mW was achieved when the current was 
140 mA. 

2.2 The schematic diagram of experimental setup
Fig. 3 shows the CO2-LITES sensor's experimental setup. The 
beam emitting from the pigtail of the DFB diode laser entered 
the fiber-coupled MPC through a fiber optic connector, and the 
beam left from the exit port following several reflections in the 
MPC. The light travelled through the fiber collimator (FC) and 
lens before focusing on the root of the self-designed QTF, where 
the strongest LITES signal is produced. The image of the used 
QTF is shown in Fig. 3(a). The length of a normal QTF is about 
0.5 cm, but the self-designed QTF is four times longer than it and 
the top of the self-designed QTF finger is trapezoidal for 
increasing the sensitivity. In this work background noise was 

Fig. 2 Laser characteristics. (a) The relationship between the output wavelength and injected current at different temperatures; (b) The relationship 
between the output power and injected current different temperatures.



Fig. 3. The schematic diagram of the CO2-LITES sensor.

Fig. 4 The frequency response of the self-designed QTF 

decreased by using a wavelength modulation spectroscopy 
(WMS) approach based on the second harmonic (2f) 
detection. The CO2 target absorption line was scanned by a 
triangle wave produced by a signal generator, while a sine 
wave produced by the lock-in amplifier was used for 
wavelength modulation. An adder superimposed the sine 
and triangular waves and fed them into the laser controller 
to control laser parameter. A lock-in amplifier 
demodulated and examined the 2f signal produced by the 
QTF, and its integration time and detection bandwidth 
were 200 ms and 0.08 Hz. The laser used in this work had 
a TEC temperature of 32 oC and a scanning current range 
from 70 to 130 mA. Different CO2 concentrations were 
achieved by combining 5% CO2 with pure nitrogen (N2). A 
mass flow meter was used to control the flow rate at 300 
mL/min.

3. Experimental results and discussions
Firstly, the optical excitation method was used to evaluate the 
frequency response (f0) of the QTF. The QTF frequency response 

curve is displayed in Fig. 4, which has been normalized and 
Lorentz fitted. The QTF has a f0 of 8675 Hz and bandwidth Δf of 
0.743 Hz. According to the equation , the Q-factor was Q = f0/Δf
calculated as 11675.64, indicating the self-designed QTF has a 
long energy accumulation time.

The modulation depth is an important parameter in 
second harmonic detection, and the 2f signal amplitude has 
a close connection with the modulation depth. Fig. 5 
illustrates the relationship between the 2f signal 
amplitude of CO2-LITES sensor and the laser current 
modulation depth. It is evident that with the increase of 
the modulation current, the amplitude of the 2f signal 
firstly increased and then flattened out. Comprehensive 
considering the laser parameters and experimental 
requirements, the modulation depth of 22 mA is selected in 
the following experiments.

Fig. 5 The variation trend between the 2f signal amplitude and current 
modulation depth 

To investigate the linear response of the sensor to CO2 
concentration, 2f signals at different CO2 concentrations 
were collected, and the results are displayed in Fig. 6(a). 



The relationship between the 2f signal amplitude and CO2 

Fig. 6 Relationship between the 2f signal and CO2 concentration. (a) The 2f signal under different CO2 concentrations; (b) The peak value of 2f signal at 
various CO2 concentrations and the associated linear fitting

Fig. 7 Noise determination of CO2-LITES sensor

Fig. 8 Allan deviation analysis of CO2-LITES sensor

concentration is shown in Fig. 6(b). The calculated R-
squared value was 0.999, which indicated that this CO2-

LITES sensor had an excellent linear response for CO2 
concentration detection.

Under the condition that the MPC was filled with pure 
N2, the measured noise is displayed in Fig. 7 with a 1 σ 
noise value of 9.20 μV. Therefore, under the condition that 
the CO2 concentration was 5%, the signal-to-noise ratio 
(SNR) was calculated to be 112.13. Dividing the 
concentration by the SNR yielded the minimum detection 
limitation (MDL), which is calculated to be 445.91 ppm. 

In order to obtain the stability of the CO2-LITES sensor 
system and its optimal detection capability, continuous 
monitoring was performed for 2.5 hours when the MPC 
was filled with pure N2. Fig. 8 displays the Allan deviation 
analysis performed on the experimental data. The MDL 
reached 47.70 ppm when the integration time was 500 s, 
which proved that the reported CO2-LITES sensor had 
good stability. 

4. Conclusion
In this paper, a high sensitive CO2-LITES sensor based on a self-
designed QTF and a fiber-coupled MPC was reported for the first 
time. The resonant frequency of 8.765 kHz and Q factor of 
11675.64 of the used QTF are advantageous to improve the 
energy accumulation time and the sensor’s signal level. The MPC 
with fiber-coupled structure and optical length of 40 m 
significantly increases the gas absorption and reduces the optical 
alignment difficulty as well as improves the robustness of the 
sensor system. Targeting the CO2 absorption line at 1576.94 nm, 
a near-infrared DFB diode laser with an output power of 16.9 
mW was used as the excitation source. The experimental results 
showed that this CO2-LITES sensor had excellent linear 
response to CO2 concentrations. A MDL of 47.70 ppm was 
obtained when the integration time reached 500 s, indicating 
such CO2-LITES sensor had outstanding system stability. The 
sensor performance can be further improved when a strong 
absorption line located at 2 μm or mid-infrared region is adopted 
[61,62].
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