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In this manuscript, an auto-focusing method in optical scanning holography (OSH) system is proposed. By
introducing Lissajous scanning into multiple signal classification (MUSIC) method in time reversal (TR) OSH,
the axial locations of the targets can be retrieved with better resolution and the peak prominence increases
from 0.21 to 0.34. The feasibility of this method is confirmed by simulation as well as experiment.
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1. Introduction
Optical scanning holography (OSH) is an incoherent digi-
tal holography (DH) technology [1] that has found extensive
application in domains including encryption [2,3], 3D dis-
play [4], remote sensing [5], and microscopy [6]. In OSH, the
amplitude and phase information of the three-dimensional
(3D) objects are recorded in two-dimensional (2D) holo-
grams by raster scanning.

Reconstruction is an important process in OSH, which
means to retrieve distinct sections of the 3D object from
the hologram. The key to reconstruction lies in the prior
knowledge of the axial location of each section. This
process is also known as auto-focusing. It is generally
necessary to use an auto-focusing algorithm to extract
the true position of the object from the hologram for
reconstructing a focused and sharp image [7].Unfortunately,
a straightforward analysis of the 2D hologram can not
provide the desired depth information.

There are a number of pioneering auto-focusing works in
OSH [7–11]. Kim and Poon utilise the Wigner distribution to
retrieve the depth parameter [12]. Ren et al. put forward an
entropy minimization method to achieve auto-focusing [13].
Meanwhile, edge sparsity has also demonstrated its capa-
bility to deal with auto-focusing [14].

With the ongoing development in deep learning, neu-
ral networks have also been applied to auto-focus in
recent years [15–19]. Pitkäaho et al. employ the AlexNet
architecture to estimate the focal position, which neces-
sitates hologram preprocessing [20]. Auto-focus is treated

as a classification problem and operationalized with deep
learning [21]. Despite its high efficacy, this method demands
a predefined set of discrete distances, making it inflexi-
ble. Madali and co-authors propose two depth information
extraction methods based on U-Net architecture [22].

The spatiotemporal focusing characteristics of time
reversal can accurately locate objects, making it use-
ful in OSH for addressing auto-focusing [23]. Formerly, we
have presented an auto-focusing method using multi-signal
classification (MUSIC) based on time-reversal (TR) tech-
nique [24]. However, the MUSIC method typically requires
point-by-point scanning to achieve high resolution, which
can be time-consuming. The diagonal scanning method
proposed to improve calculation speed but sacrifices res-
olution. Therefore, the balance between resolution and
auto-focus speed needs to be considered carefully further.
In this paper, by incorporating Lissajous scanning into
TR-MUSIC, a higher resolution with a reasonable time
investment has been achieved.

This manuscript is organized as follows: Section 2
presents the OSH system principle, followed by an expla-
nation of axial localization, i.e. auto-focusing, based on
Lissajous scanning theory. In order to highlight the effec-
tiveness of the proposed method, results from both sim-
ulation and experimentation are presented in Section 3
and Section 4, respectively. The concluding remarks are
provided in Section 5.
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Fig. 1. OSH system. BS, beam splitter; AOFS, acousto-optic
frequency shifter; M, mirror; p(x,y), pupil; L, lens; PD, photo-de-
tector; BPF, band-pass filter; LPF, low-pass filter.

2. Principle
2.1. Optical scanning holography
Fig. 1 illustrates an optical scanning holography system [1].
The laser emits a light beam that splits into two at the
beam splitter BS1. One of the beams transmits through
the mirror M1, the pupil p1(x,y) and the lens L1. The
other beam first undergoes frequency modulation at an
acousto-optic shifter (AOFS) before passing through the
mirror M2, the pupil p2(x,y), and then the lens L2. The X-
Y scanning mirror reflects the two beams, which converge
at the BS2, enabling them to scan the object point by
point. The optical signal is transformed into an electrical
signal by a photo-detector (PD) following light’s passage
through lens L3. After demodulation, the electrical signal
is stored as a hologram on the computer.

If we discretize the 3D object into N sections along the
z-axis, then the complex amplitude of the object can be
expressed as O(x,y;zi), in which x and y are space coordi-
nates, and zi denotes the distance between the i-th section
and the scanning mirrors. In OSH, we choose specifically
pupils, where p1(x,y) = 1 (omitting finite size effects) and
p2(x,y) = δ (x,y), i.e., a Dirac delta function. The spatial
impulse response h(x,y;z) can be expressed as [8]

h(x,y;z) = ( j/λ z)exp
{
(−π/NA2z2 + jπ/λ z)(x2 + y2)

}
(1)

where j is the imaginary unit and λ is the wavelength of
light. NA stands for the numerical aperture of Gaussian
function. Therefore, the hologram can be expressed as

g(x,y) =
∞∫

−∞

(|O(x,y,z)|2 ⊗h(x,y;z))dz

≈
N

∑
i=1

(|O(x,y,zi)|2 ⊗h(x,y;zi)) (2)

where ⊗ represents the convolution operation.

The reconstructed image of the l-th layer can be
expressed as

Iout(x,y;zl) =
N

∑
i=1

(|O(x,y,zi)|2 ⊗h(x,y;zi))⊗h∗(x,y;zl)

= |O(x,y,zl)|2 ⊗ γ +
N

∑
i ̸=l

|O(x,y,zi)|2 ⊗h(x,y;zi)

⊗h∗(x.y;zl) (3)

where γ = h(x,y;zl)⊗h∗(x.y;zl) and ∗ represents the conju-
gation operation. The equation consists of two terms: the
information image of the focused section and the defocus
noise from other sections.

2.2. Time reversal optical scanning holography
TR is a technique to focus wave energy to a selected point
in space and time. It can locate targets in turbid media
due to its inherent synchronised time and space focusing
properties [23,25]. While MUSIC algorithm based on eigen-
value decomposition and subspace theory, can provide high
resolution and stability to detect target directions [26,27].
TR-MUSIC is a combination algorithm that merges the
adaptive focusing of TR technique with the high resolu-
tion of the MUSIC algorithm. It has been widely used in
electromagnetic waves, optical waves and other fields [28–32].

In our previous work, it has shown that TR-MUSIC
could be adapted to work with digital holography [24].
Due to the reciprocity of light propagation, TR matrices
TDSSD and TSDDS in digital holography are formulated. Where
TDSSD represents the light propagation from the detector to
the light source and back, while TSDDS refers to the reverse
propagation of light originating from the source.

The matrix TDSSD can be expressed by means of singular
value decomposition (SVD) [33] as

TDSSD = F−1
{

GGH
}

=
M

∑
m=1

vx(m) · |O(xm,ym,zm)|2 · ∥vy(m)∥ · vH
x (m) (4)

where G is the Fourier transform of g(x,y). H indicates the
conjugate transpose operation. m = 1,2, ...,M. |·| and ∥·∥
represent the absolute value and modulo operations respec-
tively. The column vectors in x and y directions are denoted
as vx and vy. TSDDS is constructed as TSDDS = F−1 {GHG}.

If the object has M target points, then the matrix would
exhibit M positive eigenvalues, with the other eigenval-
ues near zero. The primary M vectors of the TR matrix
denote the signal subspace, while the remaining vectors
correspond to the noise subspace. The connection between
them can be expressed as

TDSSD · vx(m) = |O(xm,ym,zm)|2 · ∥vy(m)∥ · ∥vx(m)∥ · vx(m)

TSDDS · v∗
y(m) = |O(xm,ym,zm)|2 · ∥vy(m)∥ · ∥vx(m)∥ · v∗

y(m) (5)
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where vx(m) and vy(m) are the eigenvectors of matrices TDSSD

and TSDDS respectively. As previously mentioned, the 3D
object is discretized into N layers along the z-axis, with
each layer divided into U ×U points. The locations of the
targets can be determined through computation.

Kx(Xp,zi) =
U

∑
m=M+1

∣∣(vx(m)T v∗
1(Xp,zi)

∣∣2

Ky(Xp,zi) =
U

∑
m=M+1

∣∣(v∗
y(m)T v2(Xp,zi)

∣∣2 (6)

where Xp represents the position of the test point in the x−
y plane . v∗

1(Xp,zi) and v2(Xp,zi) are eigenvectors of matrices
G(Xp)G(Xp)

H and G(Xp)
HG(Xp), respectively.

When the tested object is in the same position as the
actual target, the minimum value of Eq. (6) is achieved due
to the orthogonality between the signal and noise subspace.

The pseudo-spectrum Px(Xp,zi) and Py(Xp,zi) in the x and
y directions can be expressed as

Px(Xp,zi) = ∥v1(Xp,zi)∥2
/Kx(Xp,zi)

Py(Xp,zi) = ∥v2(Xp,zi)∥2
/Ky(Xp,zi) (7)

Then the combined pseudo-spectrum becomes

P(Xp,zi) = Px(Xp,zi) ·Py(Xp,zi) (8)

We then traverse the test positions in the section at
z= zi. The parameters of each layer P(zi) can be calculated,
and the local maxima are considered as the axial locations.

P(zi) =
U2

∑
p=1

P(Xp,zi) (9)

Typically, all U ×U points of each layer are selected
as test positions, resulting in high resolution in MUSIC
algorithm. However, this approach can be very time-
consuming. As indicated by Eq. (7), one can label the
diagonal elements as test points [24]. The target point will
always respond at the diagonal position, regardless of its
location. For instance, if the object is located at (x1,y1),
it will generate responses at x = x1, and y = y1. They will
intersect the diagonal and produce two response points at
(x1,x1) and (y1,y1). Therefore, we can only calculate the
pseudo-spectrum at the diagonal position, reducing com-
putational effort. The diagonal scanning method can be
expressed as

P(zi)|diagonal =
U

∑
d=1

P(xd,yd,zi) (10)

where xd = yd, and (xd,yd) represents the diagonal posi-
tion of the test point Xp in the x − y plane. It can be
deduced from Eq. (10) that this method significantly
reduces computation time. However, it does come at the
cost of resolution.
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Fig. 2. The Lissajous curve and the selected test positions.

2.3. Lissajous scanning
Considering the limitations of both full and diagonal
pseudo spectrum, we introduce here Lissajous scanning as
a method for the balance between resolution and auto-
focus speed. The two axes in a Lissajous scan possess
similar single-tone frequencies. This technology allows the
scanning system to operate at resonance, enabling fast,
large-amplitude scanning. Especially low power consump-
tion during high quality factor scanning [34]. The Lissajous
trajectory technique is utilized in various fields includ-
ing optical coherence tomography (OCT) [35,36], frequency-
modulated gyroscopes [37], and microscopy [38]. The equa-
tion for the trajectory can be formulated as follows.

{
x = Axsin(pt)
y = Aysin(qt +ϕ) (11)

where A represents amplitude, p and q represent frequency,
respectively. The subscripts x and y indicate the x and y
directions. The term ϕ denotes the phase difference.

As the conventional TR-MUSIC method fails to achieve
a balance between time and resolution, we introduce
Lissajous scanning to improve this. By selecting test points
located on the Lissajous scan curve, better resolution can
be achieved with a reasonable amount of time. The process
is as follows: (1) Adjust the amplitude ratio of the Lissajous
curve to match the size of the section; (2) Calculate the
period T of the Lissajous curve based on the values of p
and q: T = 2π/gca(p,q), where gca(p,q) means calculat-
ing the greatest common divisor of p and q; (3) Select V
evenly spaced points within the time period from 0 to T to
discretize the curve; (4) Follow the nearest neighbor rule
to select V units as test positions from the U ×U points
of each layer; (5) Use these selected positions as the test
points Xp to estimate the depth location of targets.

The Lissajous scanning-based approach delivers greater
precision than diagonal element testing and requires fewer
computations than point-by-point testing. Fig. 2 shows the
Lissajous curve (red line) with a amplitude ratio of 10 :
10, a frequency ratio of 3 : 2 and a phase difference of 0.
By following the aforementioned steps (1)-(5), the discrete
points are generated with V = 30 in step (3) as an example.
The results are shown by the blue points in Fig. 2.
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Fig. 3. (a) The generated hologram, (b) the first 50 eigenvalues.
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Fig. 4. The sum of the pseudo-spectrum along the z-axis, where
target at (a) (10,6) and (b) (30,10).

3. Simulation
In this section, we demonstrate the viability of the pro-
posed method by applying it to single-point targets,
multi-point targets, as well as complex objects. The com-
puter configuration is AMD Ryzen 5 5600 6-Core Processor
@ 3.50 GHz, 32G RAM. Results and discussions can be
found in the subsections below.

3.1. Single point target
We test the proposed method using a simple single point
object first. The laser wavelength is set to 632.8nm in
the simulation. The size of each section is 1mm× 1mm
and is divided into 100× 100 pixels. Parameters for the
Lissajous trajectory curve include an amplitude ratio of
100 : 100, a frequency ratio of 13 : 21, a phase difference
of 0. Taking into account both calculation time and res-
olution, Lissajous scanning is utilized to choose 1000 test
locations per layer for simulation, which is ten times the
dimension of the matrix.

There are two possible scenarios due to the fact that the
Lissajous trajectory does not pass through every unit in the
plane. The outcomes could either be that the test points
selected using the Lissajous curve encompass the single
point target or that they do not encompass it. In the first
case, the target points is located at (10,6). While for the
second case, the target is at (30,10) with no intersection
with the Lissajous trajectory.

The generated hologram and the first 50 eigenvalues of
the TR matrix are shown in Fig. 3(a) and (b), respectively.
It is apparent that there is only one significant eigenvalue,
denoting a single target in the signal subspace.

Fig. 4(a) and (b) show the peak values, indicating that
the axial position of the detected object is at 30mm
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Fig. 5. The sum of the pseudo-spectrum along the z-axis (a)
frequency ratio p : q = 13 : 21 or p : q = 23 : 11, and (b) phase
difference ϕ = 0 or ϕ = π.

Table 1. Different frequency ratios in Lissajous curve.
p : q 3 : 2 4 : 5 9 : 8 13 : 21 19 : 23 23 : 11

time(s) 33.69 35.24 35.87 31.09 34.91 31.13
FWHM 0.01 0.01 0.01 0.01 0.01 0.01

for both cases. The axial location of the target can be
detected regardless of whether the chosen test points of the
Lissajous trajectory curve pass through the target point.

When analyzing the proposed method, it is important to
consider not only the position of the test point but also the
amplitude ratio, frequency ratio, and phase difference of
the Lissajous curve. The amplitude ratio is an adjustable
factors in the Lissajous curve that depends on the size
of the section. Based on Eq. (11), modifications to the
frequency ratio and phase difference also affect the trajec-
tory. In the simulation, the test point is located at (20,5)
in the x− y plane and 30mm along the z-axis. The sum
of the pseudo-spectrum along the z-axis with different fre-
quency ratios and phase difference are shown in Fig. 5(a)
and (b). One can observe from the figure that the cal-
culated axial location is 30mm under different scenarios,
which is consistent with the simulation.

Table 1 and Table 2 present the calculation time and
full width at half maximum (FWHM) results with differ-
ent frequency ratios and phase differences, respectively.
FWHM is defined as the distance between two points on
the sum of the pseudo-spectrum curve where the function
reaches half of its maximum value. As the FWHM value
decreases, the peak becomes sharper and the local maxi-
mum that needs to be found becomes more prominent. It
can be seen from the results that variations in frequency
ratios or phase differences do not noticeably affect the out-
come of axial localization, with only a marginal impact on
calculation time.

Table 2. Different phase differences in Lissajous curve.
ϕ 0 π/4 π/2 3π/4 π 3π/2

time(s) 31.25 41.59 41.69 42.23 31.22 41.24
FWHM 0.01 0.01 0.01 0.01 0.01 0.01
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Fig. 6. (a) The first 50 eigenvalues of TR matrix, (b) the sum of
the pseudo-spectrum along the z-axis.
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Fig. 7. (a) The first 50 eigenvalues of TR matrix, (b) the sum of
pseudo-spectrum of each layer along the z-axis.

3.2. Multi-point target
Multi-point targets include two situations: multiple points
on the same plane and multiple points on different planes.
This subsection provides simulations for both situations.

First, we simulate the situation where multiple points
are in different layers, with each layer containing only one
point. In the simulation, one of the points is placed at
(10,6) in the x − y plane with z1 = 30mm in the z-axis,
while the other point is at (10,6) with z2 = 30.5mm.

Fig. 6(a) shows the distribution of the first 50 eigen-
values. It can be observed that there are two prominent
eigenvalues, indicating that there are two targets. The
pseudo-spectrum accumulated along the z-axis is displayed
in Fig. 6(b). The two local maxima represent the calculated
positions of the two targets: z1 = 30mm and z2 = 30.5mm.
These values are consistent with the actual positions.

Then, we simulate the situation where multiple points
are situated on the same layer. Firstly, we will analyse two
points: one locates at (10,6) and the other is at (13,12).
Both points are at the same axial position of 30mm.The
distribution of the first 50 eigenvalues is shown in Fig. 7(a).
One can observe that there are two target points. A local
maximum can be observed at z= 30mm in Fig. 7(b), which
indicates the axial location of the targets.
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Fig. 8. The sum of pseudo-spectrum of each layer along the z-axis.
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Fig. 9. The sum of pseudo-spectrum along the z-axis (a)
z1 = 30mm, z2 = 31.5mm, (b) z1 = 50mm, z2 = 51.5mm, (c)
z1 = 70mm, z2 = 71.5mm.
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Fig. 10. The sum of pseudo-spectrum along the z-axis (a)
λ = 405nm, (b) λ = 780nm, (c) λ = 980nm.

We then consider a more complex situations involving
multi-point targets: with one target at z1 = 29.5mm, two
at z2 = 30mm, and three targets at z3 = 30.5mm. The result
is shown in Fig. 8. It can be observed that there are three
local maxima with axial location at 29.5mm, 30mm, and
30.5mm, which match perfectly with the actual case. This
demonstrates the feasibility of the proposed approach.

3.3. Resolution analysis
In this section, the resolution analysis of the proposed
method is presented. As the TR matrix is based on the
hologram. The axial resolution of the proposed methods
depends highly on several factors that are crucial to holo-
gram, including the distance of the target as well as the
wavelength of light.

We analyze the relationship between the resolution and
target distant first. In the simulation, two point targets at
(10,6) in the x− y plane with different axial locations are
considered. The two targets are kept 1mm apart along the
z-axis. The results are shown in Fig. 9(a)-(c), with z1 at
30mm, 50mm, and 70mm, respectively. It can be deduced
from Fig. 9 that the resolution degrades as we gradually
moves the targets away from the scanning mirror. When
the object gets too far away, the method fails to distinguish
the two points apart, as is shown in Fig. 9(c).

The impact of laser wavelength on axial resolution is also
considered. In the simulation, two point targets are used
as the former case, with z1 = 30mm and z2 = 30.5mm. The
calculated sum of pseudo-spectrum along the z-axis with
wavelength at 405nm, 780nm, and 980nm are shown in
Fig. 10(a)-(c), respectively. It can be observed from the
figure that the two local maxima become less distinct as
longer wavelengths are used. This indicates that the axial
resolution reduces as the wavelength increases.
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Fig. 11. The relationship between SNR and resolution.

3.4. Noise analysis
In this subsection, the impacts of noise on the proposed
method will be evaluated via simulation with different
signal-to-noise ratios (SNR). The two test points are both
located at (10,6) on the x − y plane but with different
axial positions. One of the test points is fixed at the axial
position of 30 mm. Gaussian white noise is added to the
generated hologram in the simulation. The SNR can be
calculated by

SNR = 10× log10(
( 1

RC ∑R
r=1 ∑C

c=1 F(r,c))2

1
RC ∑R

r=1 ∑C
c=1(F(r,c)−Fn(r,c))2

) (12)

where R and C stand for the number of rows and the num-
ber of columns of the matrix, respectively. F represents the
original image, while Fn represents the image with noise.

The relationship between the two variables is shown in
Fig. 11. As can be expected, the resolution gets better with
higher SNR: when SNR increased from 10dB to 100dB, the
resolution will change from 5.45mm to 0.31mm.

3.5. Complex objects
In this section, the proposed method will be verified
through simulation using complex objects. The laser wave-
length is set to 632.8nm. During the simulation, each
section of the complex graphics has a size of 1mm×1mm,
and is standardised to 128× 128 pixels, as are shown in
Fig. 12(a) and (b). The axial positions of each section are
z1 = 30mm and z2 = 35mm, respectively. The frequency
ratio and phase difference of the Lissajous trajectory are
13 : 21 and 0, respectively. Similarly, the number of test
positions per layer is selected to be ten times the dimension
of the matrix, which is 1280.

The hologram in Fig. 13(a) was generated based on
Eq. (2). The the distribution of eigenvalues is shown in

(a) (b)
Fig. 12. Complex objects (a) at z1 = 30mm and (b) at z2 = 35mm.
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Fig. 13. (a) The generate hologram, (b) The eigenvalues of TR
matrix.
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Fig. 14. The proposed method is compared with various position-
ing methods (a) entropy minimization, (b) TR-MUSIC based on
diagonal elements.

Fig. 13(b). One can observe that there are lots of eigenval-
ues in the signal space for the complex objects. Here, we
use L-curve method to partition the signal space [39].

Fig. 14(a) shows the comparison of the TR-MUSIC
method using Lissajous scanning (blue line) and the
entropy minimization method (red line) [13]. The two local
maxima of the proposed method are much more clear com-
pared to the entropy minimization method. It also attains
smaller FWHM and interference than the method using
diagonal elements, as are shown in Fig. 14(b).

Fig. 14(b) shows the axial positioning results of the
Lissajous and diagonal scanning methods. It should be
noted that the minimum value of the normalized curve
obtained through the diagonal scanning method is greater
than 0.5. Therefore, the FWHM cannot be calculated. Here
we use peak prominence (PP) to measure the prominence
of local peak [40]. The PP can be defined as

PP =
(Lmax(S1)−Lmin(S1))+(Lmax(S2)−Lmin(S2))

Max−Min
(13)

where Lmax(S1) and Lmax(S2) represent the local maximum
value at the first section (S1) and the second section (S2) of
the object, respectively. Lmin(S1) and Lmin(S2) represent the
nearest local minimum value corresponding to Lmax(S1) and
Lmax(S2). The terms Max and Min respectively represent the
maximum value and minimum value in the curve.

Table 3. Performance comparison in simulation.
method entropy diagonal scan Lissajous scan
time(s) 0.3 3.8 35.5

PP f ailed 1.47 1.96

xxxxxx-6



Chinese Optics Letters Vol. xx, No. x | March 2024

(a) (b)
Fig. 15. The recorded hologram, (a) real part, (b) imaginary part.
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Fig. 16. (a) The eigenvalues of TR matrix, (b) parameters calcu-
lated along the z-axis obtained by different methods.

Fig. 14 and Table 3 indicateThis indicates that the pro-
posed method outperforms the other two algorithm in
dealing with complex objects.

4. Experiments
In this section, we experimentally verify the proposed
axial localization method based on Lissajous scanning
using real hologram, which was retrieved experimentally
by T. Kim [8]. The laser wavelength used in the experi-
ment is 632.8nm. The diameter of the collimated beam is
D = 25mm, and the focal length of the lens is f = 500mm.
Thus, NA≈D/(2 f ) = 0.025. The two sections of the object,
sampled with a size of 500× 500 pixels, are situated at
distances of z1 = 87cm and z2 = 107cm.

The proposed method utilises a Lissajous trajectory with
a frequency ratio of 13 : 21 and a phase difference of 0.
The number of test locations in each layer is set to ten
times the matrix dimension, which is 5000. Fig. 15(a) and
(b) [8] are the real part and imaginary part of the hologram,
respectively.

The eigenvalues of the TR matrix is shown in Fig. 16(a).
The calculated results along the z-axis are presented in
Fig. 16(b), with the red curve representing the entropy
minimization method, and the black and blue one standing
for the diagonal and the proposed method, respectively.
During the experiment, the entropy minimization method
took 1.1 seconds, but the positioning was unsuccessful.

Table 4. Performance comparison in experiment.
method entropy diagonal scan Lissajous scan
time(s) 1.1 218.5 2281.7

PP f ailed 0.21 0.34

(a) (b)
Fig. 17. Reconstructed image at (a) z1, and (b) z2.

Table 4 presents the calculation time and PP for both
the diagonal scanning method and the Lissajous scanning
method. The Lissajous scanning method calculates the
position of each layer to be ten times that of the diago-
nal method. The actual calculation time is consistent with
this relationship.

One can observe that the entropy minimization method
fail to retrieve the axial location of the two sections.
While the results of the other two methods show consis-
tent localization, but the proposed method at z1 = 86cm
and z2 = 109cm is more prominent.

The reconstruction results based on the calculated axial
location of the two sections are listed in Fig. 17(a) and (b)
using the inverse imaging method [41]. Experiment results
demonstrated that the axial localization method based
on Lissajous scanning in time-reversal OSH can achieve
accurate positioning of objects.

5. Conclusions
Accurate axial localization is of utmost importance when
reconstructing holograms in OSH. Based on the TR-
MUSIC algorithm, the Lissajous trajectory curve is intro-
duced to obtain effective test points, through which a
better auto-focus resolution has been achieved. The fea-
sibility of this method was verified through simulations
as well as experiments. Compared to both entropy mini-
mization algorithm and the diagonal algorithm, the pro-
posed method demonstrated higher resolution and a more
optimal balance between resolution and auto-focus time
investment.
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