
Quantum projection ghost imaging: a photon-number-
selection method
De-Zhong Cao (曹德忠)1, Su-Heng Zhang (张素恒) 2*, Ya-Nan Zhao(赵亚楠) 2, Cheng Ren(任承)1, Jun 
Zhang(张骏)1, Baolai Liang(梁宝来)2, Baoqing Sun(孙宝清)3, and Kaige Wang (汪凯戈)4**
1Department of Physics, Yantai University, Yantai 264005, Shandong Province, China
2College of Physics Science & Technology, Hebei University, Baoding 071002, Hebei Province, China
3School of Information Science and Engineering, Shandong University, Qingdao, 266237, Shandong Province, China
4Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
*Corresponding author: hzhang@hbu.edu.cn; ** corresponding author: wangkg@bnu.edu.cn
Received Month X, XXXX; accepted Month X, XXXX; posted online Month X, XXXX

We establish a quantum theory of computational ghost imaging and propose quantum projection imaging where object information can be 
reconstructed by quantum statistical correlation between a certain photon number of bucket signal and DMD random patterns. The 
reconstructed image can be negative or positive depending on the chosen photon number. In particular, the vacuum state (zero-number) 
projection produces a negative image with better visibility and contrast-to-noise ratio. The experimental results of quantum projection 
imaging agree well with theoretical simulations and show that, under the same measurement condition, vacuum projection imaging is 
superior to conventional and fast first-photon ghost imaging in low-light illumination.
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I. Introduction
In recent years, low-photon flux imaging technology has attracted 
extensive attention due to its wide application in various fields, 
such as remote sensing, biological science and medical inspection, 
etc. [1-16]. The light source illuminating the object in most 
imaging systems is classical one, such as coherent light or thermal 
light. Under low-light illumination, only one or a few photons 
transmitted or reflected by the object can reach the detector with 
a certain probability. There are two major challenges. First, the 
zero-count of photons dominates the measurement process. In the 
intensity correlation only detected photons act as valid signal, and 
all vacuum signals are discarded. This greatly reduces the 
detection efficiency in imaging. Second, the shot noise in the 
classical source will lower signal-to-noise ratio (SNR) of the image. 
Quantum illumination in the imaging system, such as a single-
photon source or a two-photon entangled source, would avoid these 
problems [16].
The development of the single-photon detector device and photon-
counting techniques provides favorable conditions for low-light 
imaging. Kirmani et al. [2] proposed a low-flux imaging technique, 
called first-photon imaging, where for each pixel the number of 
illumination pulses prior to the first photon detection is used as an 
initial reflectivity estimate. They claimed that this avoids the 
Poisson noise inherent in low-flux operation. The similar way of 
first photon detection, called fast first-photon ghost imaging 
(FFPGI), can be applied to computational ghost imaging [8]. 
Sonnleitner et al. [3] utilized an image retrodiction approach that 
provides the full probability treatment for high-quality imaging 
data. Morris et al. [4] investigated how to obtain higher-quality 
images with a small number of photons. The authors attempted to 
find the answer to the question of how many photons does it take 
to form an image. Under using compressive techniques [14,15], 
they acquired the reconstructed image of a wasp wing with an 
average photon-per-pixel ratio of 0.45. A recent paper by Johnson 
et al. asked the same question as the title of their paper[10]. They 
pointed out a basic fact, that “for intensity images, it seems that 
one detected photon per image pixel is a realistic guide, but this 

may be reduced by making further assumptions on the sparsity of 
an image in a chosen basis, such as spatial frequency.” In any case, 
experimental results and experience tell us that under low-light 
conditions, increasing certain number of photons will significantly 
improve the image quality.
Under low-light illumination of a classical source, the quantum 
effects of light are revealed. In this paper, we set up the quantum 
theory of computational ghost imaging and propose quantum 
projection ghost imaging (QPGI). In the quantum projection 
scheme, the image is reconstructed by a certain number of photons 
of the object beam correlated with the random patterns of the 
digital micromirror device (DMD), and it thus can essentially 
avoid Poisson noise and improve image quality. Of particular 
interest is that quantum projection of the vacuum state can 
greatly increase imaging efficiency in the low-photon situation and 
still obtain a high-quality negative image as well.

II. Theory
A. General quantum theory for computational imaging

We first consider the quantum theory of computational ghost 
imaging. As shown in Fig. 1, computational ghost imaging usually 
relies on a digital micromirror device (DMD), which is an array of 
many micromirrors that flip independently. Each micromirror has 
two states,  and , which indicate that incident light is blocked or 0 1
reflected. While a computer makes independently random control 
to all micromirrors, the probability function of each micromirror 
follows Bernoulli distribution  

𝑝(𝛼) = {1 ― 𝑞,  𝛼 = 0
𝑞,  𝛼 = 1#(1)

where  is the binary variable and  is the probability that 𝛼 𝑞
micromirror pixel is opened ( ).𝛼 = 1
Assume that each micromirror is illuminated by an independently 
and identically statistical source with the probability distribution  

 of photon number . The joint-probability distribution 𝑝1(𝑛) 𝑛
between the outgoing photon number  and micromirror pixel 𝑛
value  for each micromirror is given by𝛼



𝑝(𝛼,𝑛) = {(1 ― 𝑞)𝛿(𝑛), (𝛼 = 0)
𝑞 × 𝑝1(𝑛), (𝛼 = 1)#(2)

where  for  and  for . It reflects a 𝛿(𝑛) = 1 𝑛 = 0 𝛿(𝑛) = 0 𝑛 = 1,2,⋯
statistical correlation between the two random variables,  and . 𝛼 𝑛
If any number of photons join in the bucket detection, the 
micromirror must be opened. Otherwise, the micromirror is closed 
with the probability of . This is the key of computational ghost 1 ― 𝑞
imaging. The photon probability distribution of outgoing light for 
each micromirror is obtained to be

𝑝(1)(𝑛) = ∑
𝛼

𝑝(𝛼,𝑛) = (1 ― 𝑞)𝛿(𝑛) + 𝑞𝑝1(𝑛).#(3)

In comparison with   of incident light, the probability of the 𝑝1(𝑛)
vacuum state is increased since the -state of the micromirror is 0
taken into account. For  independent micromirrors, the photon 𝑀
probability distribution can be derived by the convolutions

𝑝(𝑀)(𝑛) = 𝑝(1)(𝑛1)⨂𝑝(1)(𝑛2)⨂⋯⨂𝑝(1)(𝑛𝑀)

= (1 ― 𝑞)𝑀[𝛿(𝑛) +
𝑀

∑
𝑙 = 1

𝐶𝑙
𝑀( 𝑞

1 ― 𝑞)𝑙

𝑝𝑙(𝑛)],#(4)

where  and . The function 𝑛 = 𝑛1 + 𝑛2 + + 𝑛𝑀 𝐶𝑙
𝑀 = 𝑀!/𝑙!(𝑀 ― 𝑙)! 𝑝𝑙(𝑛)

, where . Equation (4) = 𝑝1(𝑛′1)⨂𝑝1(𝑛′2)⨂⋯⨂𝑝1(𝑛′𝑙) 𝑛 = 𝑛′1 + 𝑛′2 + + 𝑛′𝑙

is also valid for the case when a uniform source illuminates all 
DMD mirrors, where  is the photon probability distribution of 𝑝𝑙(𝑛)
any  mirrors illuminated. For the common case of coherent light l
illumination, the two cases are equivalent. If  is a Poisson 𝑝1(𝑛)
distribution  with mean photon number ,  𝑝1(𝑛) = 𝑁𝑛

1𝑒― 𝑁1/𝑛! 𝑁1 𝑝𝑙(𝑛)
also satisfies the Poisson distribution with mean photon number 𝑙

. For simplicity, we consider a binary object, and all the photons 𝑁1
transmitted or reflected from the object are received by the 
detector, the so-called bucket detection. Suppose the object is 
illuminated by  micromirrors, i.e.，  the object has  pixels. 𝑀 𝑀
Equation (4) is the photon probability distribution for the bucket 
signals. 

Fig. 1 Experimental setup of quantum projection imaging. SCPL 
represents the super continuum pulsed laser. Filteris used to select out the 
beam wavelength of 660nm. T is an object and NDF is the neutral density 
filter. L1 and L2 are the imaging lens and collective lens, respectively. DMD 
is the digital micromirror device. SPAD is the single-photon avalanche 
detector. TCSPC is the module of time-correlated single-photon counting. 
PC is a computer. 

In a computational imaging scheme where the input light photons 
are in Poisson statistics (see details in Sec. Experiment), Figs. 2 
(a1) and (a2) show the probability distribution of the bucket 
photons for the two cases. The probability of the vacuum state is 
clearly separated far from the other photon states because the -0
level of micromirrors only provides the probability of the vacuum 
state. The experimental results fit well with the theory curve, 

except for the  and  photon states, due to the stray light and dark 0 1
counting of the single-photon avalanche detector (SPAD). 
According to the mechanism of computational ghost imaging, for 
a given binary object all micromirror pixels are divided into two 
sets: on-micromirrors-pixels are imaged onto the object and off-
micromirror-pixels never do. The correlation of the bucket signal 
with the random variable of micromirrors will distinguish on-
micromirror-pixel from off-one, and an image is formed. Hence we 
consider the joint probability function of two sets of micromirrors 
with the bucket signal. Any off-micromirror-pixel does not 
correlate with photons in bucket detection, so the joint probability 
function between the designated micromirror pixel  and the 𝛼
bucket photon number  is written as 𝑛

𝑃off(𝛼,𝑛) = 𝑝(𝑀)(𝑛)𝑝(𝛼).#(5)
For an on-micromirror-pixel, the joint-probability distribution of 
outgoing light is described by Eq. (2). However, any one of on-
micromirror-pixels does not correlate with all others. As a result, 
the joint-probability distribution between  and  for the on-𝛼 𝑛
micromirror-pixel is given by

𝑃on(𝛼,𝑛) =
𝑛

∑
𝑛1 = 0

𝑝(𝑀 ― 1)(𝑛 ― 𝑛1)𝑝(𝛼,𝑛1)

= { (1 ― 𝑞)𝑝(𝑀 ― 1)(𝑛), (𝛼 = 0)
𝑝(𝑀)(𝑛) ― (1 ― 𝑞)𝑝(𝑀 ― 1)(𝑛). (𝛼 = 1)#(6)

The average photon number of outgoing beam from the pixel is 𝑞𝑁1

, and the average photon number of the bucket signal = ∑
𝑛𝑛𝑝(1)(𝑛)

for  pixels is .𝑀 〈𝑛〉𝑀 = ∑
𝑛𝑛𝑝(𝑀)(𝑛) = 𝑀𝑞𝑁1

The above Eqs. (5) and (6) summarize the basic quantum 
description of computational ghost imaging. So now we can 
calculate the correlation coefficients for imaging. We first define 
the mean value and mean square value of photon number injected 
onto each micromirror as

𝑁1 = ∑
𝑛
𝑛𝑝1(𝑛),#(7a)

𝑁2 = ∑
𝑛
𝑛2𝑝1(𝑛).#(7b)

Using Eq. (3), the corresponding mean values of outgoing photons 
for the micromirror are

⟨𝑛⟩ = ∑
𝑛

𝑛𝑝(1)(𝑛) = 𝑞𝑁1,#(8a)

⟨𝑛2⟩ = ∑
𝑛

𝑛2𝑝(1)(𝑛) = 𝑞𝑁2.#(8b)

Since all micromirrors are independent of each other, the mean 
value and mean square value of bucket photons are obtained to be

⟨𝑛⟩𝑀 = ∑
𝑛

𝑛𝑝(𝑀)(𝑛) = 𝑀𝑞𝑁1,#(9a)

⟨𝑛2⟩𝑀 = ∑
𝑛

𝑛2𝑝(𝑀)(𝑛) = ⟨(𝑛1 + 𝑛2 + ⋯ + 𝑛𝑀)2⟩

= 𝑀𝑞[𝑁2 + (𝑀 ― 1)𝑞𝑁2
1].#(9b)

The first-order correlation coefficients between the binary variable 
and bucket photon number for off- and on-micromirror-pixels are 
calculated to be

⟨𝛼𝑛⟩off = ∑
𝛼,𝑛

𝛼𝑛𝑃off(𝛼,𝑛) = 𝑞2𝑀𝑁1,#(10)



⟨𝛼𝑛⟩on = ∑
𝛼,𝑛

𝛼𝑛𝑃on(𝛼,𝑛)

= ∑
𝛼,𝑛

[𝑛𝑝(𝑀)(𝑛) ― 𝑛(1 ― 𝑞)𝑝(𝑀 ― 1)(𝑛)]

= 𝑞2𝑀𝑁1 + 𝑞(1 ― 𝑞)𝑁1.#(11)
Hence imaging pixels can be distinguished from non-imaging 
pixels. The imaging visibility is obtained as

𝑉 =
⟨𝛼𝑛⟩on ― ⟨𝛼𝑛⟩off

⟨𝛼𝑛⟩on + ⟨𝛼𝑛⟩off
=

1
1 + 2𝑀𝑞/(1 ― 𝑞).#(12)

The expression is general, independent of the intensity and 
statistical nature of the incident light. When , 𝑞 = 1/2 𝑉 = 1/(1

 is the same as the visibility of ghost imaging with thermal +2𝑀)
light correlation. Therefore, computational ghost imaging can 
greatly improve visibility by decreasing the probability of . The 𝑞
price paid is a reduction in detection efficiency.
The second-order correlation coefficients for off- and on-
micromirror-pixels are written as

⟨𝛼2𝑛2⟩off = ∑
𝛼

𝛼2𝑝(𝛼)∑
𝑛

𝑛2𝑝(𝑀)(𝑛) = 𝑞2⟨𝑛2⟩𝑀,#(13)

⟨𝛼2𝑛2⟩on = ∑
𝑛

𝑛2𝑝𝑀(𝑛) ― (1 ― 𝑞)∑
𝑛

𝑛2𝑝(𝑀 ― 1)(𝑛)

= ⟨𝑛2⟩𝑀 ― (1 ― 𝑞)⟨𝑛2⟩𝑀 ― 1.#(14)
With these coefficients we can calculate the contrast-to-noise ratio 
(CNR) [18]

CNR =
|⟨𝛼𝑛⟩on ― ⟨𝛼𝑛⟩off|

(⟨𝛼2𝑛2⟩off ― ⟨𝛼𝑛⟩2
off)(⟨𝛼2𝑛2⟩on ― ⟨𝛼𝑛⟩2

on).#(15)

B. Quantum projection imaging
Here we propose a novel imaging scheme using quantum 

projection detection. As has shown in Figs. 2 (a1) (a2), the bucket 
photons contain great fluctuations. To bypass the fluctuations, we 
measure and pick a specific number of photons in the bucket signal 
and corresponding DMD pixel patterns to form the image.
From the probability functions (5) and (6) of computational 
imaging we calculate the corresponding conditional probability 
distributions for a given photon number :𝑘

𝑃(𝑐)
off(𝛼│𝑘) = 𝑝(𝛼),#(16)

𝑃(𝑐)
on(𝛼│𝑘) = 𝑃on(𝛼,𝑘)/𝑝(𝑀)(𝑘)

= { (1 ― 𝑞)𝑝(𝑀 ― 1)(𝑘)

𝑝(𝑀)(𝑘)
, (𝛼 = 0)

1 ―
(1 ― 𝑞)𝑝(𝑀 ― 1)(𝑘)

𝑝(𝑀)(𝑘)
. (𝛼 = 1)

#(17)

With the fact , the first- and second-order conditional 𝛼 = 𝛼2

correlation coefficients are obtained equally to be
⟨𝛼|𝑘⟩off = ⟨𝛼2|𝑘⟩off = ∑

𝛼
𝛼𝑝(𝛼) = 𝑞,#(18)

⟨𝛼|𝑘⟩on = ⟨𝛼2|𝑘⟩on = ∑
𝛼
𝛼𝑃(𝑐)(𝛼|𝑘)

= 1 ―
(1 ― 𝑞)𝑝(𝑀 ― 1)

𝑝(𝑀)(𝑘)
.#(19)

The visibility of quantum projection imaging depends on the 
measurement of  photons:𝑘

𝑉(𝑘) =
⟨𝛼|𝑘⟩on ― ⟨𝛼|𝑘⟩off

⟨𝛼|𝑘⟩on + ⟨𝛼|𝑘⟩off

=
(1 ― 𝑞)[𝑝(𝑀)(𝑘) ― 𝑝(𝑀 ― 1)(𝑘)]

[𝑝(𝑀)(𝑘) ― 𝑝(𝑀 ― 1)(𝑘)] + 𝑞[𝑝(𝑀)(𝑘) + 𝑝(𝑀 ― 1)(𝑘)].#(20)

The significant feature of quantum projection imaging compared 
to conventional is its potential to produce negative images. The 
condition for the formation of a negative image is

𝑝(𝑀)(𝑘) < 𝑝(𝑀 ― 1)(𝑘).#(21)
In this case the object signal  is less than the background ⟨𝛼|𝑘⟩on

. The similar effects of positive and negative ghost imaging ⟨𝛼|𝑘⟩off
by conditional collection of certain range of bucket intensities have 
been reported both experimentally and theoretically [19-22]. 

Visibility of quantum projection imaging can be expressed as 
the similar form as Eq. (12):

𝑉(𝑘) =
1

1 + 2𝜇(𝑀,𝑘)𝑞/(1 ― 𝑞),#(22)

where the effective value of object pixels is defined as
𝜇(𝑀 ,𝑘) ≡

1

1 ― 𝑝(𝑀 ― 1)(𝑘)/𝑝(𝑀)(𝑘)
.#(23)

The positive and negative values of  correspond to the 𝜇(𝑀,𝑘)
positive and negative images, respectively. For , 0 < 𝜇(𝑀,𝑘) < 𝑀
quantum projection positive imaging has better visibility than the 
conventional one. As for the negative values of , however, 𝜇(𝑀,𝑘)
under the condition of 

(1 - 𝑞)/𝑞 < ―𝜇(𝑀,𝑘) < 𝑀 + (1 ― 𝑞)/𝑞,#(24)
negative imaging has better visibility than conventional one. The 
visibility reaches the perfect value when . - 𝜇(𝑀,𝑘)→(1 ― 𝑞)/𝑞

Fig. 2 Photon probability distributions of the bucket signals of an object (
) for the two cases: (a1) ,  and (a2) , M = 394 q = 0.005 N1 = 7.56 q = 0.001 N1



. Corresponding effective values of object pixels, visibilities and = 4.09

contrast-to-noise ratios (CNR) of quantum projection imaging are shown in 
(b1)(b2), (c1)(c2), (d1)(d2), respectively. Barcharts are the theoretical 
simulations and circles are the experimental results. In (b1)(b2), the two 
lines under the horizontal axis show the range defined by Eq. (24). In 
(c1)(c2) and (d1)(d2), the lines indicate the corresponding values of 
conventional ghost imaging for comparison.

CNR of quantum projection imaging is defined as 

CNR =
|⟨𝛼|𝑘⟩on ― ⟨𝛼|𝑘⟩off|

(⟨𝛼2|𝑘⟩off ― ⟨𝛼|𝑘⟩2
off)(⟨𝛼2|𝑘⟩on ― ⟨𝛼|𝑘⟩2

on).#(25)

Applying Eqs. (18) and (19) to it, we obtain 

CNR =

1 ― 𝑞|1 ―
𝑝(𝑀 ― 1)(𝑘)

𝑝(𝑀)(𝑘) |
𝑞 + [1 ―

(1 ― 𝑞)𝑝(𝑀 ― 1)(𝑘)

𝑝(𝑀)(𝑘) ]𝑝(𝑀 ― 1)(𝑘)

𝑝(𝑀)(𝑘)

=
1 ― 𝑞

𝑞(2𝜇2 ― 2𝜇 + 1) + 𝜇 ― 1
,#(26)

where  has been defined by Eq. (23).𝜇
In the same experiment associated with Figs. 2(a1) (a2), Figs. 

2(b1) (b2) show the effective value of the object pixels  versus 𝜇(𝑀,𝑘)
the projection photon number  of the bucket signal, and Figures 𝑘
2(c1) (c2) and (d1) (d2) show corresponding visibility and CNR of 
quantum projection imaging, respectively. In Fig. 2(b1), we can see 
that the positive imaging and negative imaging exist when the 
projection photon number  and , respectively. In the 𝑘 ≥ 14 𝑘 ≤ 13
case of positive imaging,   is valid for a larger  ( ), and 𝜇 < 𝑀 𝑘 𝑘 > 23
it gets the better visibility and CNR [see (c1) and (d1)]. However, 
the vacuum and small photon number ( ) projection in the 𝑘 < 10
negative imaging case also have the better visibility and CNR than 
the conventional imaging, as long as Eq. (24) is satisfied. 
Especially for the vacuum projection, , the - 𝜇(𝑀,𝑘 = 0)→(1 ― 𝑞)/𝑞
visibility is almost perfect and CNR is much higher than the 
others.
According to Eq. (4), it can be proved that when  the pixel 𝑀𝑞 < 1
number of the illuminated object is less than 1, all the quantum 
projection images are positive except the vacuum projection 
imaging. Figures 1(a2)-(d2) show the experiment for the case 

 and , which satisfies . The vacuum 𝑀 = 394 𝑞 = 0.001 𝑀𝑞 < 1
projection imaging has much better visibility than other ways. In 
most cases, however, CNR of quantum projection imaging is better 
than that of conventional imaging.

It is worth pointing out that in computational ghost imaging 
when some frames are selected for imaging, the remaining frames 
can be superimposed to form a complementary image [22]. In 
quantum imaging of the -photon projection, the corresponding 𝑘
complementary image of non- -photon projection is formed by 𝑘
projecting all other photon numbers except the k-photon. The 
probability of bucket detection of non -photon projection is given 𝑘
by . Replacing  with  in Eqs. (17), 𝑝(𝑀)(𝑘) = 1 - 𝑝(𝑀 )(𝑘) 𝑝(𝑀 )(𝑘) 𝑝(𝑀 )(𝑘)
(22), (23) and (26), we obtain the visibility and CNR for the 
complementary image. According to the mathematical formulae, 
there is in general no simple relationship between a pair of 
complementary images in terms of the visibility and CNR.

C. Vacuum projection imaging

In the quantum projection scheme above, a very peculiar option is 
the vacuum projection, where no photons are detected in the 

bucket signal. Let  be the probability of the vacuum state for 𝑝1(0)
the incident light on each micromirror. The corresponding vacuum 
probability for the outgoing light of the micromirror is 𝑝(1)(0)

. Since all micromirrors are statistically = 1 ― 𝑞 + 𝑞𝑝1(0)
independent of each other, for  micromirrors it has 𝑀 𝑝(𝑀)(0) =

. Therefore, the condition of negative [𝑝(1)(0)]𝑀 = [1 ― 𝑞 + 𝑞𝑝1(0)]𝑀

image  is always satisfied for vacuum 𝑝(𝑀)(0) < 𝑝(𝑀 ― 1)(0)
projection detection. According to Eq. (20), the visibility of vacuum 
projection imaging is obtained to be

𝑉(𝑘 = 0) = ―
(1 ― 𝑞)[1 ― 𝑝1(0)]

1 ― 𝑞 + (1 + 𝑞)𝑝1(0).#(27)

Fig. 3 Visibilities (a1)(a2) and CNRs (b1)(b2) for vacuum projection 
imaging, where  is the vacuum probability for incident light on each 𝒑𝟏(𝟎)
micromirror, and  is the corresponding average photon number for the N1
Poisson distribution.

The corresponding CNR for vacuum projection imaging is written 
as

CNR =
|⟨𝛼|0⟩on ― ⟨𝛼|0⟩off|

(⟨𝛼2|0⟩off ― ⟨𝛼|0⟩2
off)(⟨𝛼2|0⟩on ― ⟨𝛼|0⟩2

on)

= [1 ― 𝑝1(0)]
𝑞(1 ― 𝑞)

[1 ― 𝑞 + 𝑞𝑝1(0)]2 + 𝑝1(0)
.#(28)

For the coherent light with average photon number , 𝑁1 𝑝1(0) =
. In the vacuum projection cases, imaging visibility and exp [ ― 𝑁1]

CNR versus the probability of vacuum state are shown in Figs. 3 
(a1) and (b1), and versus the average photon number  in Figs. 3 𝑁1
(a2) and (b2), respectively. Figure 3 tells us that appropriate 
intensity of driving light ensures good imaging result of vacuum 
projection. In the case of a larger average photon number , a 𝑁1

small probability can be selected to maintain a large probability 𝑞
of the vacuum state as shown in Fig. 2. 

As indicated in Eqs. (12) and (15) above, the visibility and CNR 
of computational ghost imaging are inversely proportional to the 
object pixels. In quantum projection imaging [23], however, the 
simple inverse relationship no longer holds. Interestingly, for 
vacuum projection imaging, Eqs. (27) and (28) show that both 
visibility and CNR are completely independent of object pixels. 
This feature will greatly improve the image quality and resolution 
in the face of large and complex objects in computational ghost 
imaging.

III. Experiment

The experimental setup is similar to conventional computational 
ghost imaging but with a photon counting system replacing the 
intensity detection, as shown in Fig. 1. The photon counting 



system consists of a SPAD (Excelitas SPCM-AQRH-W6) and a 
time-correlated single-photon counting TCSPC module 
(PicoQuant PicoHarp 300) with a time resolution of 4 picoseconds. 
The optical source is a super continuum pulsed laser SCPL (NKT: 
SuperK EXTREME) with a temporal pulse width of  20
picoseconds and a frequency of  MHz. After passing through a 6.49
filter, a beam of wavelength nm is selected to illuminate the 660
object. The laser beam is strongly attenuated by a neutral density 
filter (NDF: Daheng GCC-3010) before hitting DMD (Xintong 
F4100). The object beam is reflected by DMD and registered by a 
single-pixel SPAD with the help of a collecting lens L2. The DMD 
contains  independently addressable micromirrors, 1,024 × 768
and is used to load random patterns and/or virtual objects (a music 
note and resolution bars). 
The refresh time of the DMD frame can be set in the range of 5 ×

s s. For example, if the refresh time is s, the 10 ―4 ~2 × 10 ―3 10 ―3

corresponding repetition rate of each frame is  for the pulse 6,490
frequency M of the driving laser. We record the total number 6.49
of photons in these  pulses as the photon counts of the frame. 6,490
For best experimental results, the photon number measured in 
the frame must be much smaller than the repetition rate of each 
frame.
We first create a virtual object in DMD, a musical note with 

 pixels, and consider the two cases of the probabilities that 𝑀 = 394
the micromirror is opened,  and . We measure 𝑞 = 0.005 𝑞 = 0.001
the photon statistical distributions of the bucket signal, where the 
average photon numbers are  and  as shown ⟨𝑛⟩𝑀 = 14.9 ⟨𝑛⟩𝑀 = 1.61
in Figs. 2(a1) and (a2), respectively. All the experimental results 
are shown with the circles and consistent well with the theoretical 
simulation of Eq. (4) for the Poisson photon distribution of the 
driving beam. In the experimental results, as have already pointed 
out above, the decrease in 0-photon count and the increase in - 1
and -photon counts are due to the stray light and dark counting 2
of SPAD. 
Figures 2(c1) (c2) and Figs. 2(d1) (d2) are the visibility and CNR 
for the two cases of quantum projection imaging, respectively. In 
Fig. 2(c1), the theoretical and experimental results show that 
negative images occur when the number of projection photons is k
not greater than , otherwise positive images occur. The 13
theoretical derivation manifests that when  negative 𝑀𝑞 < 1
imaging can only exist in vacuum projection, and this is verified in 
Fig. 2(c2). However, the experimental result shows the negative 
visibility for -photon. This inconsistency is due to the fact that 𝑘 = 1
as many 0-photon counts have been added into the -photon case, 1
as has been shown in Fig. 2(a2). The experimental results of CNR 
are shown in Figs. 2(d1) (d2). We can see that CNR and visibility 
change synchronously. In general, all the experimental results in 
Figs. 2 are in good agreement with the theoretical curves.

Fig. 4 Reconstructed images of a musical note are observed with four 
ways, VPGI, QPGI with -photon, CGI and FFPGI, in the three cases of 𝒌
average photon numbers    and probabilities .⟨𝒏⟩𝑴 q

In conjunction with Fig. 2, Fig. 4 shows the experimental 
observation of reconstructed images for a virtual object (music note) 
of  pixels, and all values of imaging visibility and CNR are 𝑀 = 394
listed in the plots. For the three cases of average photon numbers 

  and probabilities  of micromirror being opened, we measured ⟨𝑛⟩𝑀 𝑞
the same number of  DMD frames and reconstructed the 40,960
images in the four ways: vacuum projection ghost imaging (VPGI), 
quantum projection ghost imaging with  photons (QPGI), 𝑘
conventional ghost imaging (CGI), and fast first-photon ghost 
imaging (FFPGI). In case (i)  and  , the frame 𝑞 = 0.005 ⟨𝑛⟩𝑀 = 14.8
numbers recorded in vacuum projection and  photons 𝑘 = 31
projection are  and , respectively. In case (ii)  3,729 432 𝑞 = 0.001
and , the frame numbers recorded in vacuum projection ⟨𝑛⟩𝑀 = 1.61
and  photons projection are  and , respectively. In 𝑘 = 4 22,968 2,117
case (iii)  and , the frame numbers recorded in 𝑞 = 0.001 ⟨𝑛⟩𝑀 = 1.02
vacuum projection and   photons projection are  and 𝑘 = 3 25,535

, respectively. Obviously, the negative images of vacuum 2,549
projection are much better than all other positive images in terms 
of visibility and CNR.
In Fig. 5 the virtual objects are resolution bars (each contains 5 
pixels) in various combinations. We use the same probability 

, the photon number  of each micromirror, and 𝑞 = 0.005 𝑁1 = 7.86
 DMD frames for all the cases. The experimental results of 100,000

vacuum projection ghost imaging (VPGI), conventional ghost 
imaging (CGI), and non-vacuum projection ghost imaging (NVPGI) 
for the same objects are plotted in the first, second and third 
columns, respectively. The corresponding photon number 
distributions of the bucket detection are plotted in the fourth 
column. It is clear that as the number of object pixels increases, 
both the visibility and CNR of VPGI can maintain high values 
unchanged, while both decrease in conventional ghost imaging 
and NVPGI (the complementary imaging of VPGI).



Fig. 5 Reconstructed images of resolution bars in various combinations 
with VPGI (first column),  CGI (second column) and NVPGI (third column). 
The corresponding photon number distributions of bucket detection are 
plotted in the fourth column.

Two Chinese characters “zhen” and “kong” (vacuum) as real 
objects are also used in the experimental scheme of Fig. 1. The 
experimental results and relevant data are shown in Figure 6. In 
all  DMD frames,  and  frames are assigned to the 40,000 4,696 7,508
vacuum projection for “zhen” and “kong”, respectively, and two 
high-quality negative images are formed with these frames. The 
reconstructed images of the real objects also demonstrate that 
VPGI is the best choice with respect to CGI and FFPGI.

IV. Discussion and conclusion

Under strong enough light illumination, both conventional 
imaging and computational ghost imaging can easily produce the 
best results. However, in low-light conditions, increasing the 
exposure time or the number of exposures can significantly 
improve the image quality. That is, a sufficient number of photons 
is required to achieve a high-quality image. The answer to the 
question “how many photons does it take to form an image?” also 
depends on the quality of the image. Perhaps a more appreciate 
question to ask is: what way can observe the best image for a given 
total number of photons?

Fig. 6 Number of frames versus photon counts and reconstructed images 
of two Chinese characters with VPGI, CGI and FFPGI in (a) “zhen” and (b) 
“kong”. The total number of frames is .𝟒𝟎,𝟎𝟎𝟎

For low-light imaging application, we establish the quantum 
theory of computational ghost imaging. Based on the quantum 
statistical correlation between the photon counts of the bucket 
signal and DMD random patterns, we propose quantum 
projection imaging in which reconstructed image is formed by 
detecting a particular photon count in the bucket signal. The 
vacuum state and lower-photon counting projections yield 
negative imaging while projections with higher photon counts 
yield positive imaging. Both theoretical and experimental results 
have shown that proper selection of quantum projection imaging 
can lead to better imaging results than conventional ghost 
imaging and fast first photon ghost imaging. Quantum projection 
imaging, as a pure quantum version applied to computational 
ghost imaging, will attract much attention. In particular, vacuum 
projection imaging can achieve the best negative image, especially 
its visibility and CNR are independent of object pixels. This 
important feature will greatly promote the wide application of 
quantum imaging technology in large and complex scenes.
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