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High-resolution single-photon LiDAR without
range-ambiguity using hybrid-mode imaging
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We proposed a hybrid imaging scheme to estimate a high-resolution absolute depth map from low photon counts.
It leverages measurements of photon arrival times from a single-photon LiDAR and an intensity image from a con-
ventional high-resolution camera. Using a tailored fusion algorithm, we jointly processed the raw measurements
from both sensors and output a high-resolution absolute depth map. We scaled up the resolution by a factor of
10, achieving 1300 × 2611 pixels and extending ∼4.7 times unambiguous range. These results demonstrated the
superior capability of long-range high-resolution 3D imaging without range ambiguity.
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1. Introduction
Single-photon light detection and ranging (LiDAR) presents
high sensitivity and high temporal precision, which has been
widely applied in fields such as topographic mapping [1–3],
remote sensing [4], target identification [5,6] and underwater imag-
ing [7]. To meet the application demands, long-range and high-
resolution single-photon three dimensional (3D) imaging has
emerged as a significant trend in the development of the single-
photon LiDAR techniques [8,9]. However, it remains challenging
to directly achieve rapid and accurate 3D imaging over a wide
field-of-view (FoV) and a large depth-of-view (DoV).

Array-based single-photon LiDAR can be used to achieve
high-resolution 3D imaging [10]. However, it needs a high-power
laser to flood illuminate the scene. Besides, currently avail-
able detector arrays have limited size or show a poor time-
tagging performance [11]. Therefore, the widely used single-
photon LiDAR is typically based on raster scanning [12,13]. But,
high-density scanning inevitably leads to a longer imaging time.
To mitigate this issue, data fusion techniques have been pro-
posed to merge visible or infrared high-resolution images with
single-photon LiDAR data to improve imaging resolution [14–16].

Generally, single-photon LiDAR employs a time-correlated
single-photon counting (TCSPC) technique. However, when the
target is far away, the photon time of flight (ToF) that extend

laser emission periods will be folded, resulting in range ambigu-
ity [17] which leads to difficulties in imaging large DoV. Several
approaches have been proposed to mitigate the range ambigu-
ity. Pseudo-random pattern matching scheme [18–21] can identify
the exact flight time by correlation between the transmitted
and received patterns. Meanwhile, the multi-repetition-rates
scheme has also been demonstrated to increase the maximum
unambiguous distance beyond 100 kilometers [22] and achieve
large DoV imaging [23]. Nonetheless, there is still lacking a
comprehensive solution to achieve wide FoV and large DoV
simultaneously.

Here, we proposed and demonstrated a fusion method that
simultaneously tackled the range-ambiguity and low-resolution
bottleneck of single-photon LiDAR. We integrated a multi-
repetition-rates single-photon LiDAR and a high-resolution
intensity camera on hardware. On software, we developed a
tailored fusion algorithm for recovering absolute distance and
enhancing the image resolution in the scenarios of low photon
counts. We experimentally validated the ability to reconstruct
high-resolution absolute depth images. We scaled up the image
resolution by a factor of 10 by achieving 1300 × 2611 pixels,
and extended ∼4.7 times unambiguous range. Consequently,
our method holistically achieved long-range, high-resolution
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3D imaging of expansive scenes with high depth accuracy over
wide FoV and large DoV.

2. Approach

Fig. 1. Schematic diagram of the algorithm. (a) Single-photon LiDAR data
acquired by laser source with multiple repetition rates. (b) Image captured
by camera. (c) Intensity image of (b). (d) Absolute distance depth image. (e)
Horizontal, vertical, and diagonal gradient images from the camera image. (f)
High-resolution depth image without range-ambiguity.

In single-photon imaging, the system illuminates the target’s
p-th pixel with a periodic laser pulse s(t) and then measures
the photons scattered back. By recording the time interval t
between the arrival of the echo signal and the most recent pulse
emission, the depth Zp and reflectivity αp of the target’s p-th
pixel can be estimated. However, when the target is far away,
the photon ToF that extend laser emission periods T will be
folded, resulting in a Poisson-process rate function as follows:

λp (t) = ηαp ∑
np

s(t +npT −2Zp/c)+B, t ∈ [0,T ), (1)

where η is detector’s photon-detection efficiency, B repre-
sents the average rates of background-light plus dark-count
detections, and c is the speed of light. The parameter {npT}
represents the photon ToF being folded.

After N pulsed-illumination trials, the likelihood function for
the set of time interval {t l
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where Λ=
∫
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τ=0 Nλp(τ)dτ , and kp is the total number of photons

detected at the p-th pixel. Generally, the target distance can be
estimated by applying maximum likelihood estimation (MLE):
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Because the maximum likelihood estimator is a periodic func-
tion of Zp, Eq.3 has multiple optimal solutions, which prevents
a straightforward calculation of the actual distance to the target
and occurs range aliasing.

To overcome this range ambiguity, we use a data acquisition
scheme where adjacent pixels are detected through different
laser pulse repetition periods, and a data fusion method exploit-
ing images captured by camera. The data acquisition scheme
has been extensively detailed in previous paper [23]. Here, we
focus on the use of high-resolution images for absolute distance

reconstruction and upsampling of single-photon LiDAR data.
The schematic of the algorithm is illustrated in Fig.1, and the
algorithm can be divided into two steps.

2.1. Resolving range ambiguity guided by intensity image
Upon acquiring the measurements via the multi-repetition-rates
scheme, the integration of data from adjacent pixels within
the neighborhood Ω through cluster algorithms [20] enables the
determination of the absolute distance:

Ẑp = argmax
Zp
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where the weighting factor ωp,q is used to avoid errors in dis-
tance calculation at the edges of objects. Similar with previous
paper [23], we leverage the spatial and reflectivity information
to evaluate the weighting factor ωp,q for neighboring pixels.
However, due to the reflectivity map of single-photon LiDAR
is susceptible to Poisson noise at low photon counts, we use the
conventional high-resolution camera images to evaluate reflec-
tivity information of the single-photon LiDAR pixels. Due to
the pixel number discrepancy between the conventional camera
and single-photon LiDAR, the reflectivity value of the single-
photon LiDAR is the weighted average of several conventional
camera pixels. A many-to-one pixel mapping scenario arises:
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4√

2πD
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2

D2 , (5)

where {xl
p}D

l=1 and {I l
p}D

l=1 correspond to the positions and
intensities of the conventional camera images respectively.
Therefore, the define of the weighting factor ωp,q is ωp,q =
f (|p−q|) ·g(|Ip − Iq|). Here, f and g are the spatial and reflec-
tivity kernels, respectively, both positively correlated with the
Gaussian distribution.

Since the above process of solving Ẑp requires to integrate
the echo signals from the surrounding pixels, this often results
in the image becoming overly smoothed, consequently reducing
the imaging resolution and affecting the image quality. Here a
convex optimization algorithm is employed to further enhance
the accuracy of image reconstruction. The folded photon ToF
{npT} for the p-th pixel can be determined as n̂pT =

⌊
Ẑp/2c

⌋
.

Then, taking advantage of spatial correlations in natural scenes,
we select total variation (TV) as the penalization term. Thus,
the absolute depth map is derived as follows:

ZMLE = argmax
Z
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+β · penalty(Z).

(6)

The above equation constitutes a convex optimization problem,
and can be solved using a convex optimization algorithms [25] to
obtain the final estimated distance value of the target.

2.2. Intensity-image guided upsampling
Furthermore, to improve the resolution of single-photon imag-
ing, we can take advantage of the high resolution offered
by the conventional camera images to guide the upsampling
of single-photon images. In our framework, ZH is designated
as the high-resolution single-photon depth map we aim to
obtain. Correspondingly, the already acquired absolute depth
map ZMLE , represents a downsampled mapping of ZH , and this
downsampling satisfies the following relation:

ZMLE = fd
(
ZH
)
+ZN , (7)
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where fd(·) is the downsampling function that performs pixel-
weighted summation using Gaussian weights, and ZN represents
the noise. Assuming the noise follows a Gaussian distribution,
its likelihood function can be expressed as follows:

L = − log
[
P
(
ZH
∣∣ZMLE

)]
∝ ∥ZMLE − fd

(
ZH
)
∥2

2. (8)

Thus, by applying MLE, we can obtain the high-resolution
single-photon image:

ẐH = argmin
ZH

{L+β · penalty(ZH)}. (9)

Here, we employs a second-order total generalized variation
(TGV) regularization as the penalty term to constraint image
, which is represented as:

penalty
(
ZH
)
= α1∥T 1/2(∇ZH −ν)∥1 +α0∥∇ν∥1, (10)

where T 1/2 is the anisotropic diffusion tensor, ν is an aux-
iliary variable, and the scalars α1 and α0 are non-negative
weight coefficients. The TGV allows for sharper edge preser-
vation while suppressing noise. Since the problem is convex
but non smooth due to TGV regularization term, a primal-dual
optimization algorithm is used for solving [14].

3. Simulations

Fig. 2. Simulation results. (a) Ground truth. (b) High-resolution camera image.
(c) The simulation results by different methods under various PPP and SBR.
From left to right, each column corresponds to PPP ∼ 1 with SBR ∼ 0.1, PPP
∼ 10 with SBR ∼ 0.01, and PPP ∼ 10 with SBR ∼ 0.1, respectively. From
top to bottom, each row shows the results reconstructed by Snyder et al., Dai
et al., proposed without and with upsampling, respectively.

We conducted simulation experiments using the Middlebury
2007 dataset [26] to validate the effectiveness of our proposed
method in reconstructing high-resolution absolute distance
images. The resolution of single-photon imaging is set to
64×64 pixels. Considering the depth span of only 6 meters in

the simulation scenario, we conducted a downscaled simulation
of the imaging system’s laser period by a factor of 100. We
selected laser periods as 10 ns, 14.3 ns, 15.9 ns, 16.1 ns, and
17.1 ns for the simulation, of which the single period maximum
unambiguous range is 2.565 meters. As shown in Fig. 2, we
reconstructed the depth map using our method and compared
the results with two state-of-the-art methods.

Fig.2(c) demonstrates that conventional algorithm[24] strug-
gle to accurate estimate show the front-to-back position of
a target because of range ambiguity. Dai et al.[23] can
achieve absolute distance recovery, however, this method leads
to the presence of noise in the depth maps. Our proposed
method reconstructs absolute distance by combining conven-
tional camera images with single-photon LiDAR, reducing the
impact of Poisson noise and thereby achieving higher recon-
struction accuracy. Compared with Dai’s method, it shows
a lower RMSE, which demonstrates superior absolute dis-
tance reconstruction capabilities even with low photon counts
and low signal-to-background ratio (SBR). Beside, We have
used conventional camera images for upsampling, which can
enrich target details and remarkably improve image resolu-
tion. Compared to the results before upsampling, it has a lower
RMSE.

Fig. 3. The RMSE in simulations with different PPP and SBR levels. (a) For
PPP ∼ 1 with SBR ∼ 0.01, 0.05 and 0.1, the RMSE results are calculated by
Dai et al., proposed with and without upsampling. (b) For SBR ∼ 0.1 with PPP
∼ 0.5, 1, 5 and 10, the RMSE results are calculated by Dai et al., proposed
without and with upsampling.

By comparing our method and Dai et al.’s method on root
mean square error (RMSE) under same conditions, we find that
reconstructions relying purely on LiDAR data, especially in low
PPP and low SBR scenarios, tend to have some noisy pixels. By
using the upsampling guidance, our algorithm performs well.
As shown in Fig.3, our method outperforms Dai’s method in
terms of RMSE. The trend of our results initially decreases and
then stabilizes as SBR/PPP increases, demonstrating that our
results achieve the best accuracy.

4. Experiment
4.1. Experimental setup

The schematic of our long-range, high-resolution single-photon
imaging system is shown in the Fig.4. We use a digital full-
frame camera with a pixel resolution set to 7008×4672. The
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Fig. 4. The layout of the system. (a) Conventional high-resolution camera. (b)
Single-photon LiDAR. (c) Data processing system.

focal length of the objective lens of the camera is 400 mm. A
raster scanning single-photon LiDAR using laser source with
multiple repetition rates provides raw depth data. The scan-
ning interval is set to be 100 µrad. The single-photon LiDAR
uses a coaxial design, allowing for highly efficient detection
over a wide detection distances. To eliminate the local noise
in this coaxial system, we set a temporal separation of laser
emission and detection and employ two acousto-optic modu-
lators (AOMs) for noise suppression. The system employs a
1550 nm fiber pulsed laser, and the period is adjustable through
an external trigger, which is typically set between 1 and 2 µs.
The maximum emission laser power of the system is 250 mW.
The system includes a home-made InGaAs/InP single-photon
avalanche diode (SPAD) detector with a detection efficiency of
30% and a dark count rate of 1.2 kcps. The system uses a home-
made field programmable gate array (FPGA) board for precise
timing control. Moreover, we use the pixel signals output from
the micro-electromechanical system (MEMS) mirror to discern
different pixel information and implement a scanning method
where each pixel is illuminated by a specific frequency, with
different frequencies employed for adjacent pixels.

4.2. Experimental result

As shown in Fig.5(a), we imaged residential buildings located
0.4 to 1.6 kilometers away. The experiment was conducted
under five different laser pulse periods (1 µs, 1.43 µs, 1.59 µs,
1.61 µs, 1.71 µs), with a per-pixel acquisition time of 330 µs.
We collected a single-photon image of 128×250 pixels, and
the average PPP was ∼4.07. Guided by intensity information
from the camera, we obtained absolute depth estimation shown
in Fig.5(d). Furthermore, using the extracted contour informa-
tion of the same image, we successfully generated a depth map

Fig. 5. The experimental results. (a) The target’s location on the map. (b)
Photograph of our system. (c) High-resolution camera image of target. (d), (e)
The results using our proposed method without and with upsampling. (f), (g)
Closeup views of the building details in depth reconstructions (area highlighted
by green rectangle in (c)). (h), (i) 3D profiles of the eaves details in depth
reconstructions (highlighted by blue rectangle in (c)).

with tenfold higher resolution (1300×2611) while maintaining
high depth accuracy as illustrated in Fig.5(e). By comparing
Fig.5(f) and Fig.5(g), our method displays better detail of the
building after upsampling. The comparison between Fig.5(h)
and Fig.5(i) shows an superiority on capturing detailed 3D sur-
faces in complex urban environments. These results prove the
robustness and accuracy of our method in practical applications.

5. Conclusion
We proposed and validated a fusion long-range 3D imag-
ing method to overcome the challenge of range ambiguity
and low-resolution issue. The outdoor experimental results
extended ∼4.7 times unambiguous range and imaged with over
3 megapixels (1300 × 2611), a 10-fold increase in resolu-
tion. By providing accurate depth perception and fine spatial
awareness, the results may offer enhanced methods for rapid,
high resolution, long-range 3D imaging for large-scale scenes.
These are essential for target identification and environmental
mapping in complex areas.
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