Optical spiral vortex from azimuthally increasing/decreasing exponential phase gradients

Peihua Jie,† Zhenwei Xie,†* and Xiaocong Yuan†,‡,**

†Nanophotonics Research Centre, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
‡Research Center for Humanoid Sensing, Zhejiang Laboratory, Hangzhou 311100, China
*Corresponding author: ayst3_1415926@sina.com; ** corresponding author: xcyuan@szu.edu.cn

Received Month X, XXXX; accepted Month X, XXXX; posted online Month X, XXXX

A new type of power-exponent-phase-like vortex beam (PLB) with both quadratic and cubic azimuthal phase gradients is investigated in this work. The intensity and OAM density distributions are noticeably different when the phase gradient increases or decreases along the azimuth angle, while the orthogonality and total OAM remain constant. The characteristics of the optical field undergo a significant change when the phase shifts from linear to nonlinear, with the variation of power index having little impact on the beam characteristics under nonlinear phase conditions. These characteristics provide new ideas for applications such as particle manipulation, optical communications, and OAM encryption.

Keywords: Optical vortex; orbital angular momentum; optical spiral; azimuthally varying phase gradient.

DOI: 10.3788/COLXXXXXX.XXXXXX.

1. Introduction

This In 1992, Allen et al. discovered orbital angular momentum (OAM) in Laguerre-Gaussian beams [1]. Light carrying OAM has a helical phase structure that can be described using \(e^{i\phi} \), where \(\phi \) is the azimuth angle and \(l \) denotes the topological charge. The optical vortex beam (OV), with its unique spiral phase wavefront structure and zero light intensity distribution at its center [2], holds great potential for applications in optical manipulation [3-5], free-space optical communications [6-8], quantum communications [9-11], high-security encryption [12-14], among other fields. Multiplexing of OAM channels can add unlimited transmission capacity to optical communications [8, 15, 16]. For example, the combination of OAM multiplexing with polarization-division multiplexing and wavelength-division multiplexing, taking advantage of the orthogonal nature of OAM, can achieve ultra-high-capacity communication [17, 18].

The conventional OV has a uniform distribution of OAM, which limits its application in scenarios such as particle manipulation. Various modulation methods have been explored for OV carrying OAM, such as using multi-channel superposition to obtain composite beams [19, 20], metasurface generation and manipulation of vortices [21, 22]. Recently, some more unconventional vortex beams have been proposed, such as the power-exponent-phase vortex (PEPV) [23-25], multiplexed generalized vortex beams [26, 27], and the generation of multi-twisted beams via azimuthal shift factors [28]. Although some studies have demonstrated that phase gradients can generate optical force [29], research on the unique effects of different phase gradient directions on vortex beams is severely limited. This greatly limits the widespread application of special vortex beams in fields such as optical communication, particle manipulation, and trapping.

In this work, we consider PEPV-like beams (PLB) whose phase gradient either increases or decreases along the azimuth. PLBs can be generated by simply imposing a gradient phase on a Gaussian laser mode (e.g., by using a spatial light modulator). We experimentally verify the intensity distribution of the PLBs and analyze their OAM density, orthogonality, and total OAM. As the phase gradient direction along the azimuth angle increases or decreases, the intensity and OAM density distributions of PLBs exhibit noticeable differences while maintaining constant orthogonality and total OAM. Additionally, we discuss the quadratic and cubic changes in phase, as well as single-period and multi-period scenarios. This could offer more solutions for light field regulation, with potential applications including high-capacity communications, vortex information encryption, and particle manipulation.

2. Design method

First, we consider the conventional OVs, for which the phase distribution is:

\[
ed(\phi) = f(\phi) = L\phi. \quad (1)
\]

where \(L \) is the topological charge, \(\phi \) is the azimuthal angle, ranging from 0 to 2\(\pi \). For conventional OVs, the phase varies linearly with respect to changes in angle. Here, we consider the case where the phase is the square or cube of the azimuth, which can be expressed as

\[
ed(\phi) = f(\phi) = 2\pi L \left(\frac{\phi}{2\pi} \right)^n, n = 2, 3. \quad (2)
\]

The case where \(n \) is equal to 2 is called the quadratic OAM (QO), and the case where \(n \) is equal to 3 is called the cubic OAM (CO). Note that if \(n=1 \), single-period PLBs regress to conventional OVs. Building on this, we examine the phase of periodic variations. In this instance, the topological charge \(L \) in this case is equal to the number of periods in the 0–2\(\pi \) range, i.e., \(T=L \). The phase distribution is:

\[
ed(\phi) = f(\phi) = 2\pi \left(\frac{T \left(\text{mod}(\phi, \frac{2\pi}{T}) \right)}{2\pi} \right)^n, n = 2, 3. \quad (3)
\]

The situation where \(n \) is equal to 2 is known as periodic quadratic OAM (PQO), while the situation where \(n \) is equal to 3 is referred to as periodic cubic OAM (PCO). Here, we define the direction from 0 to 2\(\pi \) along the azimuth as positive. Therefore, the phase gradient that increases along the azimuth is referred to as the positive gradient phase (PGP), while the phase gradient that decreases along the azimuth is known as the negative gradient.
phase (NGP). Both PGP and NGP cases are considered for both single-period and multi-period configurations.

To investigate the effect of the two-phase gradient (PGP and NGP) generated by an PLB on beam propagation, we begin with the generalized laws of refraction\cite{30, 31}:

\[n_i \sin \theta_i - n_s \sin \theta_s = \frac{n_0 \lambda}{2 \pi} \frac{d \phi}{ds}, \]
\[\sin \theta_s = \frac{n_0}{2 \pi n r} \frac{d \phi}{d \theta}, \]
where \(d \phi / d \theta \) represents the phase gradient along the angular direction. Here, we consider the case where the light is perpendicularly incident on a circular metasurface, and in the cylindrical coordinate system, Equation (4) then becomes

where \(\theta_s \) represents the off-axis angle of incident light passing through the metasurface with an additional gradient phase. This means that the gradient phase causes the ray to deviate with a deflection angle \(\theta_s \) that is proportional to the phase gradient \(d \phi / d \theta \). We can thus obtain the beam profile \(R' \) in the target observation plane as \(R \propto d \phi(\theta) / d \theta \)\cite{26}. Consequently, for traditional OVs, the phase gradient remains constant, and at each \(\theta \) in the incident plane, the detection plane has the same \(R' \), i.e., the light intensity is distributed evenly along the angular direction in a doughnut shape. In contrast, for PLBs, the phase gradient will cause the target plane to have different \(R' \) values along the angular direction. Figure 1 schematically shows these differences. The phase of the PLB varies in two quadratic forms of PGP and NGP, as shown in Fig 1(e) - (f), respectively. The PGP and NGP lead to distinct helical shapes, corresponding to Fig 1(b) - (c), respectively.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Fig. 1 Differences between OVs and PLBs. (a) Intensity and phase distributions of OAM. (b) (c) Intensity and phase distributions of PLBs. (d) Phase (P) and phase gradient (PG) of the OAM. (e) (f) P and PG of QO.}
\end{figure}

\section{3. Result}

Numerical simulations were performed using a customized MATLAB script of Fresnel diffraction and the PLBs with PGP and NGP distribution in single and multi-period cases are verified by experiments, as shown in Fig 2-3. The top row of each figure displays the phase distribution, with blue lines indicating the phase (P) and red lines indicating the phase gradient (PG). The fourth row of each figure presents the simulated far-field intensity distribution, while the fifth row shows the experimental far-field intensity distribution. In our experiment, this nonlinear phase was applied to a Gaussian beam using a spatial light modulator, and the output light was received by a CCD camera (See Note 1 in the Supplementary Material for details).

A multi-period can be regarded as the superposition of multiple single-period distributions along the angular direction. It is worth noting that when the topological charge is 1, the multi-period configuration degenerates into a single-period configuration. According to Equations (2) - (3), the phase distribution exhibits rotational symmetry in the case of multi-periods but not in the case of a single-period. Consequently, as illustrated in Figs. 2-3, the intensity distribution displays rotational symmetry in the multi-period case, but not in the single-period case. Another significant difference is that, in the single-period case, the phase gradient is discontinuous only at 0 and \(2\pi \), regardless of the topological charge \(L \). In contrast, in the multi-period case, the discontinuities of the phase gradient increase proportionally to the topological charge. As a result, the far-field intensity distribution in a single period has only one discontinuous point, while the multi-period case has several.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2.png}
\caption{Fig. 2 Intensity profiles, phase distributions, and OAM density distributions of the (a) - (b) QO and (c) - (d) CO with different topological charges. (a) (c) The PG is increasing along the azimuth angle. (b) (d) The PG is decreasing along the azimuth angle. Further information regarding different topological charges can be found in Note 2 in the Supplementary Material.}
\end{figure}

Each figure depicts PGP and NGP as (a) (c) and (b) (d), and \(n=2 \) and \(n=3 \) as (a) (b) and (c) (d), respectively. Experimental results demonstrate excellent agreement between measured and predicted profiles in all cases. For PGP, a closed loop that resembles an Archimedean spiral appears in a single period and a windmill shape that is proportional to the topological charge with a radius that increases from small to large within each small period in a multi-period. In contrast, NPG's phase gradient is opposite to that of PGP, which results in a distinct intensity contour. It exhibits an open loop similar to that of an Archimedean spiral in a single period with a periodic distribution from large to small radius within each small period in a multi-period. A sudden change in the intensity distribution occurs from power index \(n=1 \) to \(n=2 \), while \(n=2 \) and \(n=3 \) correspond to similar spiral distribution types. In other words, the intensity changes significantly only when the phase gradient changes from linear to nonlinear, and the power index \(n \) only affects the rate of change of the spiral radius.
If the PG is constant, the OAM density is not affected by the azimuthal angle and is directly proportional to the topological charge. However, if the PG is a nonlinear function of the azimuthal angle, the OAM density is positively correlated with both the azimuthal angle and the topological charge. The theoretical OAM density is shown in the second row of Figs. 2-3. PLBs have an uneven OAM density distribution along the angular direction that follows the intensity distribution. This pattern is similar to that of traditional OVs, which also exhibit OAM density associated with the intensity distribution (See Note 2 in the Supplementary Material for details).

Here, we calculate the total OAM of different topological charges of PLBs as follows:

\[
L = \frac{\varepsilon_0}{2i\omega} \int \left(E^* \cdot (r \times \nabla) E \right) \, dr, \tag{9}
\]

where \(\varepsilon_0 \) is the free space permittivity and \(\omega \) is the angular frequency. Figure 4 shows the OAM for light fields with different topologies. Regardless of whether it is a single-period or a multi-period, the total OAM under PGP and NGP is similar to that of traditional OAM. In other words, PLBs with different PG directions do not alter the total OAM, but they do alter the distribution of OAM density.

Another important characteristic of OVs that is applied in optical communications is the strong orthogonality between beams with different topological charges. Clearly, any two vortex beams with different topological charges are orthogonal to each other. To verify the orthogonality property of PLBs, we integrate the inner product of any two beams. Fig. 5 illustrates the orthogonality of the vortex beam under NGP conditions. The orthogonality of orbital angular momentum (OAM) between different topological charges ranging from -10 to 10 is presented, where the unit for the numbers in the figure is dB. Higher dB values indicate better orthogonality. Higher numbers of dB indicate better orthogonality. The results (See Note 4 in the Supplementary Material for details) clearly indicate that the orthogonality of the beams is not affected by PGP and NGP, and all types of PLBs exhibit a certain degree of orthogonality. However, compared to traditional OVs, their orthogonality is weaker. The reason for this difference is that the phase gradient of PLBs is not constant, meaning that beams with different topological charges have the same phase gradient in some partial area.
Fig. 5 Orthogonality between different topological charges of NGP vortex beams for QO, CO, PQO, and PCO, respectively. (Further information about PGP vector beams can be found in Note 4 in the Supplementary Material).

4. Conclusion
In summary, we have proposed a special vortex beam with a phase gradient that increases or decreases along the azimuthal variation, and we have analyzed its optical properties. Our experimental results confirm the theoretical predictions of the PLBs. Due to their PG changing in opposite directions, they exhibit spiraling intensity and OAM density distributions, while maintaining orthogonality and total OAM. Furthermore, we discussed the impact of the power index n on optical field characteristics, noting that it only causes a sudden change in these characteristics when the PG shifts from linear to nonlinear. The beam characteristics of PLBs with n=2 and n=3 showed minimal variation. Additionally, PLBs can generate unique optical forces, which will be discussed in our subsequent research. These unique intensity profiles of the PLBs may provide new avenues for various optical applications, including optical manipulation and optical communication. As a result, PLBs offer greater application flexibility than traditional OVs.

Funding Sources.
This work was supported by the Guangdong Major Project of Basic and Applied Basic Research (No. 2020B0301030009), National Natural Science Foundation of China (Nos. 61935013 and 61975133), Science and Technology Innovation Commission of Shenzhen, Shenzhen Peacock Plan (Nos. KQTD20170330110444030, and JCYJ20200109114018750), and Shenzhen University (No. 2019075).

References
8. Z. Xie, S. Gao, T. Lei, S. Feng, Y. Zhang, F. Li, J. Zhang, Z. Li, and X. Yuan, "Integrated (de)multiplexer for orbital angular momentum fiber communication," Photonics Research 6(2018).

