Four-channel metasurface for multiplexing images under two non-orthogonal polarization states

Wenyuan Liu (刘文远)¹, Yizhou Zhuo (卓奕州)¹, Likun Xiao (肖莉琨)¹, Chen Chen (陈晨)¹, Shu Shang (尚书)¹, Hongzhan Liu (刘宏展)¹, Hongyun Meng (蒙红云)¹, Faqiang Wang (王发强)¹, Xiangbo Yang (杨湘波)¹, and Zhongchao Wei (韦中超)¹*

¹Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China;
*Corresponding author: wzc@scnu.edu.cn

By its unparalleled capacity to manipulate optical parameters, metasurfaces demonstrate the ability to simultaneously manipulate the amplitude and phase of the incident light. Exhibiting both near-field nanoprinting images and far-field holography images are quintessential illustrations of this capability. In preceding investigations, image multiplexing commonly transpires within the single polarization state or orthogonal polarization states, thereby exhibiting a deficiency in terms of information security when contrasted with the non-orthogonal polarization states. In this research, a multifunctional metasurface with the capability of exhibiting four-channel images has been proposed by using a nanobrick as a quarter-wave plate. Through the adjustment of the orientation angles of each nanobrick, nanoprinting can be displayed under both linearly and circularly polarized light. Building on this, the propagation phase is combined with the geometric phase to generate diverse phase delays, enabling the metasurface to be multiplexed under two non-orthogonal polarization states to achieve four-channel image displays. Intriguingly, bidirectional nanoprinting and bidirectional holography can be achieved by altering the direction of incidence polarization states. The proposed metasurface platform can open new possibilities of creating compact multifunctional optical devices, while also enhancing applications in multi-channel image displays, information anti-counterfeiting, and encryption.

Keywords: nanoprinting; holography; quarter-wave plate; four-channel; multiplex

1. Introduction

Metasurfaces are artificially designed planar structures that have demonstrated the remarkable ability to effectively manipulate the amplitude [1-3], phase [4-9], and polarization [10-15] of incident optical waves. With the continuous evolution of integrated optics, metasurfaces that possess the ability to simultaneously modulate multiple properties of incident light have been proposed as candidates for data storage and information encryption [16]. Exhibiting both near-field nanoprinting images and far-field holography images [17-25] is quintessential illustrations of manipulating the amplitude and phase concurrently. In order to achieve these operations, prior investigations have employed three major approaches. The first entails adjusting the transmittance to generate a nanoprinting image and altering the orientation angles of the nanobricks to produce a holographic image [26]. The second approach employs Malus’s law and propagation phase to display two images in two fields at the same time [27-28]. The final approach involves utilizing structural color to exhibit both a color nanoprinting image and a full-color holographic image simultaneously [29].

Information multiplexing can make the maximal use of existing metasurfaces [30-32] to improve the information capacity as much as possible without increased costs. Above studies have demonstrated the feasibility of displaying images in two fields under a single incident polarization state. Additionally, recent research has demonstrated that interleaved metasurfaces [33] and coherent pixelated metasurfaces [34] can be multiplexed under two polarization states to achieve four-channel image displays. Polarization multiplexing is generally conducted in two orthogonal polarization states. This can be attributed to the inherent inability of two orthogonal polarization beams to interfere with one another. The process of multiplying images under two non-orthogonal polarization states has emerged as a pressing necessity in multi-channel image displays, which offer heightened information security compared to those based on orthogonal polarization states. In recent years, the presentation of dual-channel nanoprinting under two non-orthogonal states has been displayed by leveraging the orientation degeneracy [35-36] implicit in Malus’s law. Nevertheless, this approach merely involves manipulating amplitude and does not enable image multiplexing. Multiplying images under two non-orthogonal polarization states has become an urgent need in multi-channel image displays.

This piece of work proposes a single-layer metasurface platform to achieve the effect of four-channel image displays under two non-orthogonal polarization states. In contrast to previous demonstrations, the anisotropic nanobricks act as quarter-wave plates (QWP) [37]. By tailoring the orientation angles of each nanobrick, nanoprinting
can be displayed under both LP and CP light. This provides a novel method to achieve dual-channel image displays and enhances the design’s flexibility. Building on this, the propagation phase is combined with the geometric phase to generate different phase delays, enabling the metasurface to be multiplexed under two non-orthogonal polarization states to achieve four-channel image displays. A single-layer metasurface composed of subwavelength-spaced Silicon (Si) nanobricks on a Silicon dioxide (SiO₂) substrate is designed to demonstrate this capability. Each nanobrick of this single-layer metasurface integrates two sets of amplitude and phase modulated channels. Moreover, bidirectional nanoprinting and bidirectional holography can be achieved by changing the direction of incidence polarization states. This provides a simple way to implement bidirectional nanoprinting and bidirectional holography, enhancing their practical applications. The proposed metasurface platform can open new possibilities of creating compact multifunctional optical devices, while also enhancing applications in multi-channel image displays, information anti-counterfeiting, and encryption.

2. Design principle

As shown in Figure 1, the metasurface displays the ability to manipulate the amplitude and phase of two non-orthogonal polarization states. Upon incidence of LP light, "Petal" and "C" patterns are discernible, while CP light incidence reveals "A" and "B" patterns. In the near field, we contemplate the methodology of displaying a nanoprinting image under LP light firstly and then displaying a nanoprinting image under CP light. The required Jones matrix is calculated as

\[J = R(-\theta) \begin{bmatrix} t_x e^{i\phi_x} & 0 \\ 0 & t_y e^{i\phi_y} \end{bmatrix} R(\theta) \]

Where \(R(\theta) \) indicates the rotation matrix. \(\theta \) is the in-plane orientation angle of the nanobrick. \(t_x \) and \(t_y \) are the transmission coefficients. \(\phi_x \) and \(\phi_y \) are the polarization dependent phase shifts. When the polarization direction of the polarizer is fixed at \(\pi/2 \), the polarization state of the incident light is y-polarized (YLP) light. Upon incidence onto the metasurface, the complex-amplitude of the output light can be expressed as

\[E_1 = \left((t_x e^{i\phi_x} - t_y e^{i\phi_y}) \sin \theta \cos \theta, t_x e^{i\phi_x} \sin^2 \theta + t_y e^{i\phi_y} \cos^2 \theta \right)^T \]

Subsequently, a QWP is positioned behind the polarizer, whereby it effects the transformation of the incident light from a YLP light to a left circularly polarized (LCP) light. Upon incidence onto the metasurface, the complex-amplitude of the output light can be expressed as

\[E_2 = \frac{1}{\sqrt{2}} \left(\frac{t_x e^{i\phi_x} + t_y e^{i\phi_y}}{2} [1,i] + \frac{t_x e^{i\phi_x} - t_y e^{i\phi_y}}{2} e^{2\theta} [1,-i] \right)^T \]

Likewise, as the output light is transmitted through the analyzer once more, the intensity of output light can be expressed as

\[I_2 = \frac{1}{2} \left(\frac{t_x e^{i\phi_x} + t_y e^{i\phi_y}}{2} + \frac{t_x e^{i\phi_x} - t_y e^{i\phi_y}}{2} e^{2\theta} \right)^2 \]
with two different orientation angles, thereby enabling the accomplishment of a two-step geometric phase encoding. Subsequently, while retaining the nanobrick as a QWP, propagation phase is introduced by sizing the nanobrick’s dimension to achieve a five-step propagation phase. Following this, the geometric phase is merged with the propagation phase to generate diverse phase delays for YLP and LCP incident light, leading to the creation of two independent holographic images. At last, the target phase profile of holography is calculated by Gerchberg-Saxton (GS) algorithm. In order to apply it to the case of large angle exit, Rayleigh Sommerfeld diffraction (RS) is employed to calculate the diffraction result. The formula of diffraction can be given by \[U(x_0, y_0) = \frac{1}{i\lambda} \iint U(x, y) \cos \frac{\exp(i\kappa r)}{r} \, dx \, dy \]

where \(U(x_0, y_0) \) and \(U(x, y) \) represent the complex amplitude distribution of electric fields on the holographic plane and metasurface, respectively. \(\lambda \) represents the wavelength of diffraction. \(\cos \leq n, \leq r \) is the inclination factor. The phase of two holograms can be determined via GS algorithm optimization. From the ten-step phases mentioned above, select the one closest to the two holographic images and subsequently determine the corresponding size and orientation angle.

The operational mechanism of presenting dual-channel nanoprinting images is delineated in Figure 2. For each nanobrick, the black dotted line representing a specific intensity has four cross-marked points of intersection, \#1, \#2, \#3, and \#4. These intersections indicate that for nanoprinting target 1 to achieve a particular intensity modulation, each nanobrick has four potential orientation angles. For the same nanobrick, the intensity of nanoprinting target 2 can be chosen to be lower or higher than 0.5. Specifically, to realize a higher value modulation, target 1 to achieve a particular intensity modulation, \(I_1 \) can be chosen to be lower or higher than 0.5, and a two-step geometric phase encoding can be attained. Subsequently, the propagation phase can be combined with the geometric phase to generate different phase delays for both YLP and LCP incident light. Finally, the GS algorithm can be employed to calculate the target phase. From the ten-step phases mentioned above, select the one closest to the two holographic images.

Figure 3 illustrates the design process for a four-channel metasurface. Firstly, in order to achieve a specific intensity modulation of the nanoprinting target 1, one may choose from four different orientation angles. Secondly, by selecting two orientation angles based on whether the intensity of nanoprinting target 2 is lower or higher than 0.5, and a two-step geometric phase encoding can be attained. Subsequently, the propagation phase can be combined with the geometric phase to generate different phase delays for both YLP and LCP incident light. Finally, the GS algorithm can be employed to calculate the target phase. From the ten-step phases mentioned above, select the one closest to the two holographic images.
intensity values in the curve to obtain four candidate orientation angles. Subsequently, the incident light is switched from YLP to LCP light and the intensity of nanoprinting target 2 can be chosen to be lower or higher than 0.5. Out of the four possible orientations, two can qualify and a two-step geometric phase encoding can be achieved. Thereafter, by meticulously designing the dimensions of each nanobrick, a five-step propagation phase can be attained. The geometric phase and propagation phase are then combined to produce different phase delays for YLP and LCP incident light, respectively. Finally, the GS algorithm can be utilized to calculate the target phase. Among the ten-step phases mentioned above, select the one closest to the two holographic images and subsequently determine the corresponding size and orientation angle.

![Fig.4.](image)

Fig.4. (a) Schematic of a subwavelength-spaced Si nanobricks on a SiO$_2$ substrate. (b) Dimensions of the selected five nanobricks and their cross-transmittance and propagation phase.

As shown in Figure 4(a), the proposed metasurface comprises two different components: subwavelength-spaced Si nanobricks and a SiO$_2$ substrate. Each nanobrick is defined by five structural parameters: cell length C, height H, length L, width W and orientation angle θ. According to grating formula, to reduce the near-field coupling effect, the cell size should be larger. However, to avoid the high diffraction orders of the metasurface, the cell size should be smaller. In light of this, we opted for a cell length of 700nm while fixing the nanobrick’s height at 1000nm. To determine the appropriate dimensions, we employed FDTD Solutions (Lumerical Inc., Vancouver, BC, Canada) to perform a scan of the length and width of the Si nanobricks. Specifically, in the simulation, we varied the lengths of the nanobricks from 350nm to 520nm and the widths from 80nm to 250nm with a 2nm increment at the wavelength of 1310nm. The details of geometric parameters, cross-transmittance and propagation phases of the selected nanobricks are listed in Figure 4(b).

3. Results

3.1 amplitude control of two polarization states

For the sake of simplicity, and to showcase the amplitude control of two non-orthogonal polarization states, a metasurface sample is designed labeled M1. The orientation angles of individual nanobricks are determined based on the desired intensity of the nanoprinting images, while the size of each nanobrick remains unaltered. Comprising a total of 100×100 nanobricks, the M1 design spans a dimension of 70×70um. The incident light sources are YLP and LCP light, both operating at a wavelength of 1310nm.

![Fig.5.](image)

Fig.5. (a) Simulated and theoretical intensity. (b) Simulation results of the metasurfaces for dual-channel nanoprinting images. The second column show the nanoprinting images under YLP incident light. The fourth column show the nanoprinting images under LCP incident light.

By customizing the orientation angles of individual nanobricks, the intensity of output lights can be regulated by diverse modulation functions. Figure 5(a) illustrates the intensities of different modulation functions in both the simulation and theory. Figure 5(b) displays the simulated outcomes. As the results show, two nanoprinting images can be displayed under both LP and CP light. In contrast to previous demonstration, the proposed metasurface platform provides a novel method to achieve dual-channel image displays and enhances the malleability of the design.

3.2 amplitude and phase control of two polarization states

To showcase the potential for multiplexing the proposed metasurface in two non-orthogonal
polarization states, two samples of metasurface have been designed and labeled M2 and M3 respectively. These samples exhibit different nanoprinting and holographic images. The incident light comprises YLP and LCP, while the wavelength of operation is 1310nm and the distance between the metasurface and holographic images has been designed to be 30um. The inverse operation has been employed to calculate the distribution of nanobricks in terms of their orientation angles and dimensions. Figure 6 depicts the simulated results in both near-field and far-field.

As shown in Figure 6(b), the nanoprinting images in sample 1 are “petal” and “A”, and the holographic images in sample 1 are “C” and “B”, respectively. The sample 2 show “flower” and “B” in near-field and “Z” and “D” in far-field. As the results show, this metasurfaces can be multiplexed under two non-orthogonal polarization states to achieve four-channel image displays.

To evaluate the outcomes, we investigate the holographic efficiency of the two holographic images. The holographic image efficiency can be defined as the quotient of the light intensity of the holographic imaging and the input intensity. At the designed wavelength of 1310 nm, the holographic images efficiencies in sample 1 and sample 2 are 20.21% and 19.68%, 18.15% and 19.92%, respectively. In comparison with other metasurfaces, our attained holographic image efficiency is acceptable. Actually, the reduced efficiency of our metasurface primarily from the nanobricks that serve as QWP and the polarization conversion rate of the QWP was only 50%.

To investigate the broadband property of nanoprinting images in near-field and holographic images in far-field, three YLP lights and LCP lights near the operation wavelengths are utilized to irradiate M2. As demonstrated in Figure 7, the nanoprinting and holographic images maintain their high quality as the wavelengths span from 1310nm to 1400nm with intervals of 30nm. This observation verifies the ability of the metasurface can work in a wide band. Furthermore, when the wavelength deviates more to the designed wavelength, the holographic image will emerge larger geometric distortion. This phenomenon can be accounted for the phase mismatch based on diffraction theory.
Implement these processes in both directions, thereby increasing the practical applications of the technology.

Table 1. A comparison between the previous multi-channel supersurface and this article.

<table>
<thead>
<tr>
<th>polarization states</th>
<th>Methods</th>
<th>unit cell</th>
<th>holographic efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article 1[1]</td>
<td>orthogonal polarization states</td>
<td>interlaced metasurfaces</td>
<td>2*2</td>
</tr>
<tr>
<td>Article 2[2]</td>
<td>orthogonal polarization states</td>
<td>coherent pixelated metasurfaces</td>
<td>2+2</td>
</tr>
<tr>
<td>This article</td>
<td>non-orthogonal polarization states</td>
<td>modified Malus’ law</td>
<td>1+1</td>
</tr>
</tbody>
</table>

Based on the simulation results, the proposed metasurfaces exhibit the ability to achieve four-channel image displays in two non-orthogonal polarization states within the near-infrared band. As shown in Table 1, our design offers several noteworthy advantages over previous schemes. Firstly, each nanobrick of this single-layer metasurface integrates two sets of amplitude and phase modulated channels. Secondly, the anisotropic nanobricks serve as QWP, enabling a novel approach to dual-channel image displays and enhancing design flexibility. Finally, bidirectional nanoprinting and bidirectional holography can be achieved by changing the direction of incidence polarization states, offering a simple way to implement bidirectional nanoprinting and bidirectional holography, enhancing their practical applications.

3. Conclusions

In summary, a single-layer metasurface composed of subwavelength-spaced Si nanobricks on a SiO$_2$ substrate is designed to achieve four-channel image displays under two non-orthogonal polarization states. In contrast to previous demonstrations, the anisotropic nanobricks act as QWP. By tailoring the orientation angles of each nanobrick, nanoprinting can be displayed under both LP and CP light. On this basis, the propagation phase is combined with the geometric phase to generate different phase delays, enabling the metasurface to be multiplexed under two non-orthogonal polarization states to achieve four-channel image displays. Each nanobrick of this single-layer metasurface integrates two sets of amplitude and phase modulated channels, which can open new possibilities of creating compact multifunctional optical devices, while also enhancing applications in multi-channel image displays, information anti-counterfeiting, and encryption.

Funding. National Natural Science Foundation of China (NSFC) (GrantNO.62175070;61774062), Natural Science Foundation of Guangdong Province (2021A1515010352), And Science and Technology Program of Guangzhou (2019050001).

Disclosures. The authors declare that there are no conflicts of interest related to this article.

Data availability. Date underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

12. Y. Chen, X. Yang, and J. Gao, “3D Janus plasmonic...