Flexible omnidirectional reflective film for CO$_2$ laser protection

Wenling Chen(陈文玲)1†, Chao Liu(刘超)1†, Yuqi Zou(邹郁祁)1†, Zhihe Ren(任志禾)1, Yuanzhuo Xiang(向远卓)1, Fanchao Meng(孟凡超)2, Yinheng Xu(许银生)3, Chong Hou(侯冲)1,4, Sheng Liang(梁生)2, Luyun Yang(杨旅云)1, and Guangming Tao(陶光明)1,5†

1Wuhan National Laboratory for Optoelectronics and Sport and Health Initiative, Optical Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
2Key Laboratory of Education Ministry on Luminescence and Optical Information Technology, National Physical Experiment Teaching Demonstration Center, Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
3State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
4School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
5State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

† These authors contributed equally to this work.

*Corresponding author: tao@hust.edu.cn

In this letter, we presented flexible omnidirectional reflective film made of polymer substrates and multiple alternating layers of two chalcogenide glasses for full-angle CO$_2$ laser protection. The structure parameters of device were simulated for theoretical prediction of best device structure. And the reflector was fabricated by alternate thermal evaporation of two chalcogenide glasses with large refractive index contrast. The reflectivity was greater than 78% at 10.6 µm. The flexible reflective film can provide effective solution for full-angle CO$_2$ laser protection of the moving targets, such as laser operators and mobile optical components, with potential applications for wearable laser protective clothing.

Keywords: omnidirectional reflective film; flexible reflector; CO$_2$ laser protection; chalcogenide glass.

1. INTRODUCTION

CO$_2$ laser is widely utilized in industry manufacture and clinical medicine [1] for its non-contact nature, high precision, high-energy and power tunability. With special working window in 9-11 µm wavelength range, in which light is strongly absorbed by biological tissues components, such as hydroxyapatite and water [2], CO$_2$ laser could efficiently ablated both hard and soft tissue [3], thereby was widely used in surgical clinical treatment, such as otolaryngology [4] and neurosurgery [5]. However, the widespread use of high-energy CO$_2$ lasers creates safety hazards for exposed humans. Once faulted oriented, CO$_2$ laser power of more than 5 W on cornea and skin can cause loss of vision [6, 7] and burns [6, 8], respectively. Moreover, CO$_2$ lasers have been extensively employed in the material processing industry [9] due to that CO$_2$ laser is strongly absorbed by materials such as paper, wood, plastics, glass, stone, and different composite materials products [10,11]. Hence, high-energy CO$_2$ laser irradiation on optical components can inflict damage on optical performance [12]. At present, common protective equipment for CO$_2$ laser irradiation are mainly based on reflective lens of rigid glass substrate [13]. This device is high-cost, lacking of lightweight feel and limited pinpoint accuracy and accessibility for operators. In practice applications, there is a need to enhance the flexibility and maneuverability of protective equipment to accommodate the requirements for the protection of movable joints and mobile optical components [13]. Optical metamaterials based on one-dimensional photonic crystals show promising in optical field regulation with scalability [14-16]. The photonic bandgap structure in thin sheet (thickness: several tens to hundreds of micrometers) [17] can achieve high reflectivity in specific wavelength (R~99%). The structural design using the mid-infrared photonic band on a polymer substrate can provide enhanced film flexibility and reflectivity to extend the protection range for wearable needs [18-20].

Chalcogenide glasses (ChGs) are an ideal material with excellent mid-infrared transmission performance (at least in 9-11 µm window), low-cost and stable manufacturing capabilities, and are the only glassy materials that can cover the transmission window in the 3-12 µm wavelength range with more stable chemical properties, mature production processes and lower costs than crystalline materials [21,22]. In addition, ChGs have the advantages of adjustable components and precision moulding, and the optical refractive index can be adjusted in the range of 2-4 by component control. In 2009, T. Kohoutek et al. [23] prepared a near-infrared one-dimensional photonic crystal omnidirectional reflector based on ChGs with 98.8% normal incidence stopband of the reflector at 1.55 µm.

In this paper, we reported a flexible omnidirectional reflective film based on periodic photonic structure. The parameters of laser wavelength, incident angle, transverse electrical and magnetic, the film period thickness and number were changed to simulate for theoretical...
prediction of best device structure. The reflector was fabricated by alternating thermal evaporation of two ChGs (Ge$_{20}$As$_{20}$Se$_{15}$Te$_{2}$ and As$_{49}$Se$_{50}$) with large refractive index contrast and excellent thermal stability [24]. The optical properties of the resulting reflector were characterized using Fourier transform infrared spectrometer (FTIR) to demonstrate the discrepancy between theoretical predictions and experiments. The results show that our reflector can achieve full-angle (0-90°) CO$_2$ laser protection for the targets in locomotion.

2. NUMERICAL SIMULATION

2.1. Flexible high-reflection film structure model and photonic bandgap calculation

The structure of one-dimensional photonic crystal reflective film is depicted in Fig. 1(a), where d_b, d_h, and d_f are the layer thicknesses and n_b, n_h, and n_f are the refractive indexes of the polymer layer, high-refractive-index layer, and low-refractive-index layer, respectively.

![Fig. 1 Structure model and photonic bandgap. (a) Schematic of flexible reflective film, and (b) Photonic bandgap diagram for a one-dimensional photonic crystal.](image)

In theoretical simulations, for the purpose of omnidirectional laser reflection, two materials with large refractive index difference are required to achieve photonic band gap in the CO$_2$ laser operating band. In addition, both materials are required to have long infrared cut-off wavelength (at least 12 µm). Therefore, two ChGs, Ge$_{20}$As$_{20}$Se$_{15}$Te$_{2}$ ($n=3.068$ at 10 µm) [25] and As$_{49}$Se$_{50}$ ($n=2.37$ at 10 µm) [26], are chosen as the high-refractive-index and low-refractive-index materials, respectively, which are stable glasses with excellent thermal stability, glass forming ability, and large adjustable refractive index range. The thicknesses are taken according to the quarter wave stack condition, $d_b=\lambda/4n_b$ and $d_f=\lambda/4n_f$. Taking the CO$_2$ laser wavelength as the central wavelength ($\lambda=10.6$ µm), the film thicknesses can be determined as $d_f=0.8638$ µm and $d_f=1.1181$ µm, respectively. 45-µm polyphenylene sulphone resins (PPSU) polymer film is derived as substrate to provide flexibility to the omnidirectional reflector. Considering that the ChGs are fragile and easy to be oxidized, polymethyl methacrylate (PMMA) polymer film layer is added on the surface as protective layer. According to the designed structure, the band diagram of the photonic crystal was obtained using a standard transfer matrix method as shown in Fig. 1(b), which allows for the analysis of propagating and evanescent modes in the structure, corresponding to real or imaginary Bloch wave number solution [27, 28]. The omnidirectional band of this structure spans from 10 µm to 10.7 µm defined by the band edges ω_1 and ω_2.

2.2. Structural parameter simulation

The reflection properties of one-dimensional photonic crystal structures under different structural parameters were investigated using COMSOL 6.0 based on the transmission matrix method. As shown in Fig. 2(a) and (b), under the condition of normal incidence, no matter whether the PMMA coating is added or not, with the increase of the number of cycles (N_c), the reflectance at the center wavelength gradually increases (ultimately more than 95%), and the bandgap width gradually decreases. When the N_c reaches 8, the reflectivity and bandgap width do not change significantly with further increase of N_c. The early study results show that polymer film coated with 30-µm glass material is still bendable and robust, which means when a 5-µm PMMA coating is added to the surface layer, the photonic bandgap width decreases significantly for low N_c structures, but when the N_c increases above 8, the effect is negligible.

The reflectance of TE and TM polarizations with PMMA coating at 0°, 15°, 30°, 45°, 60°, 70° and 80° angles are represented in Fig. 2(c) and (d). It can be found that the effective optical thickness of the photonic crystal structure film gradually decreases with the incident angle increases, causing the energy bands of TE and TM polarized waves to shift toward high frequencies. For the TE mode, both the forbidden band width and the central wavelength reflectance increase with the incident angle, while the opposite is true for the TM mode. However, the reflectivity can still reach above 87% in the 9.8-10.6 µm band.
3. EXPERIMENT

In this experiment, high-purity As$_{40}$S$_{60}$ and Ge$_{20}$As$_{30}$Se$_{18}$Te$_{12}$ were prepared by melt-quenching method [29, 30]. One-dimensional photonic crystal structure was prepared by vacuum thermal evaporation technique. The evaporation rates and film thicknesses were measured by quartz crystal monitor. As$_{40}$S$_{60}$ film (evaporating temperature ~370 °C, residual pressure ~8×10$^{-4}$ Pa, deposition rate ~4-6 Å/s) as the low refractive index component and Ge$_{20}$As$_{30}$Se$_{18}$Te$_{12}$ film (evaporating temperature ~460 °C, residual pressure ~1×10$^{-3}$ Pa, deposition rate ~4-6 Å/s) as high refractive index components were alternately deposited on cleaned PSU polymer films with a thickness of 45 μm to obtain a one-dimensional photonic crystal reflective film. Surface polymer PMMA film was prepared using a spin-coating method from solution of N, N-dimethylformamide. Polymer film was coated by spinning for 30 s at a spin speed 2000 rpm and heated in the vacuum furnace at 60 °C and 5 Pa.

The principle of vacuum thermal evaporation and spin-coating is shown in the Fig. 3(a), and the obtained flexible one-dimensional photonic crystal reflective film is shown in the Fig. 3(b). The reflective film exhibits high flexibility compared to other reflector with rigid substrates and can be bent at will with a bending radius of less than 2.5 mm. Scanning electron microscopy (SEM) was used to capture the cross-sectional images of the omnidirectional reflective film to show the periodicity and interface quality of the reflector obtained by vacuum thermal evaporation. The mirrors were polished before the images were recorded. The normal incidence reflectivity spectra of the prepared
flexible reflector were recorded in the range of 7-14 μm using the Fourier transform infrared spectrometer (FTIR), and the reflectivity spectra of the flexible reflector under the incident angles of 0°, 30°, 45° and 60° was measured by using a self-built test platform based on FTIR.

4. RESULTS AND DISCUSSION

SEM cross-section image of prepared four periods omnidirectional reflectivity film, Fig. 3(c), shows the film sequence. The bottom layer is the PPSU substrate, on the top of which is the Ge_{50}As_{25}Se_{25}Te_{20} and As_{40}S_{60} glass with alternating structures. As shown in the figure, the upper three periodic structures have uniform periodic thicknesses with an average thickness of 1.93 μm, which is consistent with the expected results. The lowermost layer has a relatively higher cycle thickness, mainly due to the stress effect between the glass and the polymer.

The Fig. 4(a) illustrates the normal incidence reflection spectra of the prepared flexible reflective films with different periods and added polymer layers in the range of 7-14 μm, which is in complete agreement with the simulation results. With the increase of the N, the reflectivity of the photonic bandgap structure gradually increases, and the photonic bandgap gradually increases. Meanwhile, there is a certain deviation between the periodic thickness of the prepared film and the thickness ratio of the high and low refractive index glass compared with the simulation results, which causes the central wavelength of the photonic bandgap to move to the high frequency direction, which is consistent with the simulation results. The fabricated 4-period flexible reflector was studied by Fourier transform infrared spectrometer, it indicated that the central wavelength was 10.2 μm and the reflectivity was greater than 78% at 10.6 μm, which is close to the expected result.

The reflection spectra of the 4-periods reflective film at different incident angles, namely 0°, 30°, 45° and 60°, were measured by FTIR, and the results are shown in the Fig. 4(b). We observed very good agreement between the calculated and measured reflectance spectra. With the increase of the incident angle, the central wavelength gradually decreases, the maximum reflectivity at the central wavelength also decreases, and the bandgap width decreases, mainly because the effective optical thickness of the film layer of the photonic crystal structure gradually decreases. The reasons for the deviation in Fig. 4(a) and (b) include the intrinsic impurity absorption of ChGs materials and the absorption of external impurities introduced during the glass processing (e.g., glass grinding).

The Fig. 4(c) shows the reflection spectra of the one-dimensional photonic crystal reflective films with different period thicknesses, both of which are four periods, and the central wavelengths are 10.1 μm (d=0.85 μm and d=1.09 μm) and 8.5 μm (d=0.71 μm and d=0.91 μm), respectively. The shift of central wavelength according to period thickness are attributing to the photonic bandgap shifting. By changing the period thickness, the photonic bandgap can be shifted in the wavelength of 1-12 μm.

![Fig. 4](image)

Fig. 4 Reflection spectra of one-dimensional photonic crystals under different conditions. (a) Reflectance spectra of prepared chalcogenide multilayers with different periods and added polymer layers, namely PPSU (red), 1-period (blue), 4-periods (black) and 4-periods with upper surface PMMA coating (green); (b) the reflection spectra of the prepared 4-periods chalcogenide multilayers at different incident angles, namely 0° (black), 30° (red), 45° (blue) and 60° (green); (c) the reflectance spectra of prepared chalcogenide multilayers with different period thicknesses, d is 1.94 μm (black) and 1.62 μm (red) corresponding to λ₀ is 10.1 μm and 8.5 μm.

5. CONCLUSION

In conclusion, we designed, fabricated, and characterized a flexible omnidirectional reflective film for full-angle CO₂ laser protection of exposed operators and locomotive optical components. The reflector, composed of four periods of Ge_{50}As_{25}Se_{25}Te_{20} and As_{40}S_{60} alternating layers, exhibits 78% reflectance at 10.6 μm, which was consistent with the theoretical simulation. With the increasing of the number of alternating periods, the highest reflectivity will reach more than 95%. In addition, based on the high transparency of ChGs in the infrared window, the band
gap of the multi-layer film can be adjusted in the range of 1-12 μm by changing the period thickness. Flexible omnidirectional dielectric mirror fibers also can be designed as woven fabrics for radiation barriers.

Funding. National Natural Science Foundation of China (No. 61875064).

Acknowledgments. This work was supported by the National Natural Science Foundation of China (No. 61875064). The authors are grateful for the assistance from the Analytical and Testing Center of Huazhong University of Science and Technology (HUST).

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References