
Machine-learning-based high-speed lensless large-field 
holographic projection using double-sampling Fresnel 
diffraction method
Chentianfei Shen(沈陈天飞),1 Tong Shen(申桐),1 Qi Chen(陈祺),1 Qinghan Zhang(张磬瀚),1 and Jihong 
Zheng(郑继红)1,*

 1School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200433, China
*Corresponding author: *jihongzheng@usst.edu.cn
Received Month X, XXXX; accepted Month X, XXXX; posted online Month X, XXXX

Machine learning can effectively accelerate the runtime of a computer-generating hologram. However, the angular spectrum method and 
single fast Fresnel transform-based machine learning acceleration algorithms are still limited in the field-of-view angle of projection. In this 
paper, we propose an efficient method for the fast generation of large field-of-view holograms combining stochastic gradient descent (SGD), 
neural networks and double-sampling Fresnel diffraction (DSFD). Compared with the traditional Gerchberg-Saxton(GS) algorithm, the 
DSFD-SGD algorithm has better reconstruction quality. Our neural network can be automatically trained in an unsupervised manner with a 
training set of target images without labels and its combination with the DSFD can improve the optimization speed significantly. The proposed 
DSFD-Net method can generate 2K resolution holograms in 0.05 seconds. The feasibility of the proposed method is demonstrated with 
simulations and experiments.
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1. Introduction
Focus cues, image quality, field of view, and eye box are key 
issues in near-eye displays such as virtual reality and 
augmented reality[1, 2]. Various optical schemes are adopted 
and applied in near-eye display realization to design a more 
portable and compact near-eye display devices, such as 
coaxial prisms, planar displays based on transparent film 
arrays, freeform surfaces, multiplayer displays with 
directional backlighting and stereoscopic see-through retinal 
projection [1-4]. The holographic near-eye display has 
achieved great progress in recent years [4-10]. The 
holographic near-eye display is a competitive way to realize 
near-eye displays because of its ability to meet compact 
structures and to reproduce three-dimensional (3D) image for 
a realistic and comfortable viewing experience [11]. 

The Nyquist criteria limits the size of the reconstructed 
image when employing a standard diffraction method in 
computational holography, either the Fresnel diffraction 
algorithm or the Fraunhofer diffraction algorithm [12]. In 
recent years, researchers have tried to investigate 
computational holographic diffraction algorithms for large 
fields of view, such as curved-SLM-array method [13], 
curved-hologram method [14], and time-multiplexing method 
[15]. By using spherical beam lighting, Chang [16] and Qu 
[17] suggested an image amplified lensless holographic 
projection. However, the evaluation of their computer-
generated hologram (CGH) requires a sophisticated iterative 
algorithm that is unfortunately time-consuming. In each 
iteration of the calculation, several Fourier transforms and 
inverse Fourier transforms have to be implemented. As the 
resolution of the image increases, the computation time 
increases accordingly. In order to accelerate the computing 
speed, machine learning technology has been used in the field 
of optical information processing [18-20]. Peng [7] and Wu 
[8] proposed to compute the CGH by machine learning 
methods. With the help of machine learning methods, the time 

for calculating the CGH is reduced to less than 0.2 seconds. 
However, their networks can only encode the CGH based on 
the single-fast Fourier transform and the angular spectrum 
diffraction algorithms, and thus cannot obtain large FOV 
angles. Namely, it is not large enough for binocular 
observation for near-eye display.

To overcome the aforementioned field-of-view and time-
consuming issues, we present a method combining the 
machine-learning-based technique with the lensless 
holographic projection. This method is based on the double-
sampling Fresnel diffraction (DSFD) algorithm [17] and 
machine-learning method for calculating the hologram with 
phase-only spatial light modulator (SLM). Both the simulation 
and the experiments are performed and the evidence 
demonstrates that the proposed method is able to provide an 
enlarged and qualified holographic image. The hologram can 
be real-time generated with high resolution. Therefore, the 
proposed method may hopefully find its application in near-
eye display devices.
2. Methods

In a holographic display system, finding the phase value  on 𝜙
the SLM plane that best approximates the target image can be 
formulated as solving an optimization problem of the form

𝜙 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝐿[𝑠 ⋅ 𝑓(𝜙),𝑌]}                       (1)

where the function  describes the light propagation,  is 𝑓(𝜙) 𝑌
the amplitude of the target image,  represents the loss 𝐿
function,  is the scale factor of the system. The optical system 𝑠
not only determines the imaging quality of the projection but 
also is one of the most critical factors that affect the numerical 
calculation of diffraction propagation.

We discuss an intuitive reason for the use of the double-
sampling Fresnel diffraction algorithm as the light propagation 
function. In a near-eye display system, a large field of view is 
a vital factor and is determined by the way of the holographic 
image projection. We evaluate several lensless light 
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propagation algorithms, including the single-fast Fourier 
transform (S-FFT), the angular spectrum method (ASM), the 
double-sampling Fresnel diffraction (DSFD) and the three-
step diffraction [21]. Among these methods, both the S-FFT 
and ASM algorithms employ plane wave as the light source 
and hence the size of output images is limited. Although the 
three-step diffraction can obtain the largest field in the image 
reconstruction, the zero-order output and the first-order output 
overlap to each other [21]. Therefore, we use the dispersive 
spherical wave as the light source of the system and implement 
the DSFD for calculating the light propagation. A schematic 
illustration of the holographic image projections with a plane 
wave illumination and a diverging light source is presented in 
Fig. 1.

3.
Fig. 1. Principle of S-FFT and DSFD algorithms for 
lensless holographic projection. (a) S-FFT algorithm 
with plane wave illumination, the maximum projecting 
image size is limited by Nyquist criterion. (b) DSFD 
algorithm with diverging point light source, the image 
size is larger.

Fig. 1(a) shows the scheme of CGH calculation for S-FFT 
algorithm. The complex amplitude distribution  on the 𝑈𝑖(𝑥𝑖)
image plane is given by

𝑈𝑖(𝑥𝑖) = 𝑒𝑥𝑝( ―
𝑖𝑘𝑥2

𝑖

2𝑧 )𝐹[𝑈𝑆𝐿𝑀(𝑥𝑆𝐿𝑀)𝑒𝑥𝑝( ―
𝑖𝑘𝑥2𝑆𝐿𝑀

2𝑧 )](2)

in which  represents the complex amplitude of the 𝑈𝑆𝐿𝑀(𝑥𝑆𝐿𝑀)
SLM, z is the distance between the CGH plane and the image 
plane.

The image size of S-FFT algorithm  is thus given by𝐿𝑖

                              (3)𝐿𝑖 = λz/Δ𝑥𝑆𝐿𝑀
Here,  is the wavelength and  presents the pixel size of 𝜆 Δ𝑥𝑆𝐿𝑀
the SLM.

As depicted in Fig. 1(b), the diverging spherical wave 
propagates through two planes, the first plane is the hologram 
plane and the second one is the image plane. According to the 

Fourier optics, the propagation of the light wave can be 
regarded as two steps. In the first step, since the SLM is 
illuminated by a diverging light wave, the procedure from the 
hologram plane to the point light source can be taken as the 
inverse Fraunhofer diffraction. The complex amplitude 
distribution  on the source plane is given by𝑈𝑠

             (4)𝑈𝑠(𝑥𝑠) = 𝑒𝑥𝑝( 𝑖𝑘𝑥2
𝑠

―2𝑟)𝐹 ―1[𝑈𝑆𝐿𝑀(𝑥𝑆𝐿𝑀)]
where  represents the inverse Fourier transform and 𝐹 ―1 𝑘

 is the wave number. In the second step, the procedure = 2π/𝜆
from the point light source to the image plane can be regarded 
as the Fresnel diffraction. The complex amplitude distribution 

 on the image plane is thus expressed as𝑈𝑖

   (5)𝑈𝑖(𝑥𝑖) = 𝑒𝑥𝑝[ ―
𝑖𝑘𝑥2

𝑖

2(𝑧 + 𝑟)]𝐹{𝑈𝑠(𝑥𝑠)𝑒𝑥𝑝[ ―
𝑖𝑘𝑥2

𝑠

2(𝑧 + 𝑟)]}
Since the Fourier transform is used in the above diffraction 

procedures, the sampling interval should be calculated 
according to

𝛥𝑥𝑠 =
𝜆𝑟

𝐿𝑆𝐿𝑀
,𝛥𝑥𝑖 =

𝜆(𝑟 + 𝑧)
𝑁𝛥𝑥𝑠

                      (6)

The maximal size of the diffraction image is determined by

                                  (7)𝐿𝑖 =
𝑧 + 𝑟

𝑟 𝐿𝑆𝐿𝑀
where  is the size of the SLM itself and r is the distance 𝐿SLM
between the point source and the SLM.

The use of the diverging wave as the light source may 
enlarge the image sizes with a ratio depending on the relation 
of r and z. According to Equations. (3) and (7), Fig. 2 shows 
the comparison between the image size for the S-FFT 
algorithm based on plane wave illumination and that of the 
DSFD algorithm based on a diverging point light source under 
the same diffraction distance.  It can be clearly observed that 
the DSFD algorithm can be used to enlarge the image size.

Fig. 2. Projection image size of the S-FFT algorithm 
and DSFD algorithm, where the wavelength is 532 nm, 
pixel size is 8 μm, number of pixels is 1920, the 
distance between the point light source and the SLM 
plane is 2.6 cm. 

The procedure for calculating the resulting light field on 
the image plane is shown in Equation (5). Evidently, the 
complex amplitude representation on the SLM plane is 
required to display such holograms. Usually, spatial light 



modulators are classified into phase-only, amplitude-only and 
complex-amplitude modulation types. Aside from availability, 
phase-only SLMs are often preferred because of their high 
light efficiency. Notably, light is only steered but not 
attenuated. Nevertheless, calculating holograms that function 
with phase-only SLMs is one of the main challenges in 
developing holographic displays. The common method to 
encode the complex amplitude CGH into phase-only CGH is 
an iterative phase optimization. The iterative Gerchberg-
Saxton algorithm (GS algorithm) is the standard way to solve 
the problem of phase retrieval of a field on two separate planes, 
as shown in Fig. 3. Unfortunately, the GS algorithm inevitably 
requires long computation time and leads to serious speckle 
noise in the image reconstruction.

Fig. 3. GS algorithm workflow for computing a phase-
only CGH from target image.

In order to further improve the image quality and reduce 
the calculating time of the CGH, the method based on the 
combination of the DSFD algorithm and machine learning is 
proposed. Gradient descent is a way to minimize an objective 
function parameterized by a model's parameters by updating 
the parameters in the opposite direction of the gradient of the 
objective function to the parameters. We first implement 
stochastic gradient descent (SGD) to optimize the loss 
function in Equation 1, see Fig. 4. We give an initial random 
phase on the SLM plane and calculate the complex field on the 
image plane with the DSFD algorithm. Then we calculate the 
loss between the target image and the simulated projection 
image. Finally, we backpropagate the error between target 
image and simulate reconstruction with a stochastic descent 
optimization algorithm to update the phase-only holograms. 
Since the iterative procedure of the SGD does not perform the 
inverse calculation of the light propagation and only needs to 
calculate the diffraction once, time consumed is only half of 
the traditional GS method for each epoch. In addition, by 
adjusting the learning rate, the SGD algorithm converges 
much faster than the traditional GS method. 

Fig. 4. SGD algorithm workflow for computing a 
phase-only CGH from target image.

Despite the fact that the SGD algorithm can reduce the 
computation time of holograms by more than half, we still 

need a fast way to obtain the phase-only hologram. We then 
combine the above DSFD algorithm with a neural network to 
form our DSFD-Net model. The DSFD-Net model can be 
trained in an unsupervised learning method of the mapping 
from the target image to the hologram without labels. The 
generation and reconstruction of phase-only CGH can be 
depicted as the encoding and decoding process of target 
images. Our neural network works as the encoder part in the 
system and translates the target image to the corresponding 
phase-only CGH. The output of the network is the input of our 
decoder. The decoding part is the fixed DSFD model which 
has been described above. The architecture of our training 
procedure and the U-Net is shown in Fig. 5. As an 
unsupervised learning model, the data sets and validation sets 
need not be labeled.

Fig. 5.  Illustration of our wave propagation model. A 
target image is first converted to an amplitude value, 
then is passed to a phase-encoder network (i.e. the U-
Net). At the SLM plane, we display the CGH and 
propagate the light field to the target-plane. During the 
training phase, the loss between the projection image 
and the target amplitude can be calculated and is then 
propagated back to train the phase-encoder network.

The U-Net model uses a down-sampling and then up-
sampling structure. The use of a skip connection at the same 
stage ensures that the final CGH output incorporates more 
low-level features and retains all the information in the image. 
This advantage is very suitable for CGH computation. The 
length and width of the image tensor are reduced by half after 
each down-sampling in our U-Net, and the geometric feature 
extraction of the input image is realized after down-sampling 
repeats 6 times. When the next 6 times of up-sampling is 
implemented, the reconstructed original size image tensor is 
obtained. In order to avoid the disappearance of the gradient 
during the network training, the residual connection is 
employed to realize the cross-layer transfer of the gradient. 
After each convolution, the batch normalization is performed 
to avoid overfitting. In the U-Net training procedure, we use 
the amplitude of 1920×1080 image as the training input. The 



U-Net outputs the corresponding CGH. We simulate the 
physical diffraction processing with the CGH generated by our 
U-Net.
3. Simulation

We simulate the light propagation on Google Colab with 
PyTorch, which is essentially based on python and CUDA, to 
demonstrate the performance of different algorithms with 
GPUs. The GPU is NVIDIA Tesla P100 with 16GB memory. 
To keep consistent with the experimental situation, the pixel 
pitch of the CGH is set as  and the resolution is dLSLM = 8μm
1920×1080. The wavelength of laser is 532nm. The distance 
between the diverging point light source and the hologram is 
2.6 cm and the propagation distance is 26 cm. Fig. 6 shows the 
simulated results of the SGD method and GS method. We use 
the mean square error (MSE) and peak signal-to-noise ratio 
(PSNR) to quantify the quality of the reconstructed images. 

Fig. 6. Performance evaluation of the GS algorithm 
and the SGD algorithm.

A grey level image in Fig. 7 is employed to demonstrate 
the effectiveness of our U-Net. A comparison between the U-
Net and iterative methods demonstrates that the proposed U-
Net method produces the reconstructed images with 
acceptable quality. The PSNR is more than 23.

Fig. 7. Performance evaluation of our U-Net and the 
iterative methods. The PSNR and MSE value indicate 
the reconstruction image quality of the algorithm.

The numerical reconstructions are presented in Fig. 8. We 
test 100 random images from the testing dataset and Fig.8(a) 
indicates that both the GS and SGD iterative algorithms can 
achieve a high quality(>25dB) after sufficient iterations are 
performed (say 30 iterations). When the number of iterations 
and the time consumed is low, the PSNR of the GS method is 
higher than that of the SGD method. But after the number of 
iterations exceeds 35, the situation is reversed, i.e., the PSNR 
of SGD is better than that of GS. We find that, for running the 
same iterations, SGD method consumed half the time of GS 
method, so the SGD method only takes less than half the time 

compared to the traditional GS method to achieve high-quality 
reconstruction results (PSNR>30). The SGD method is a 
better iterative method compared to the GS method when 
high-quality reconstruction of images is required. The results 
are achieved on the assumption that the wave propagation 
model used for optimizing the SLM phase pattern is the same 
for simulating the final image. The U-Net only takes an 
average of 0.05 seconds to generate 1920×1080 holograms 
and achieve an average of 25dB PSNR of the reconstruction 
image quality.

Fig. 8. Comparison of average calculating speed and 
image quality achieved by several CGH techniques.  (a) 
Images are reconstructed with similar quality at the 
same number of iterations by GS and SGD algorithms. 
(b) The SGD algorithm requires less time than GS 
algorithm for high quality reconstruction. The U-Net 
takes less than 0.05 seconds, which is far less than 
iterative methods. The horizontal of Fig. 8(b) is in 
logarithmic scale.

4. Experiments

We also build an actual phase-only holographic display 
prototype to validate our simulation results. All the 
experiments are performed under the same condition. The 
schematic of the experimental setup is shown in Fig. 9.  We 
load the CGH on a HOLOEYE PLUTO-2-VIS-014 reflective 
SLM. The pixel size of the SLM is 8μm and the pixel number 
is 1920×1080. The green laser with the wavelength of 532nm 
is used. The patterns are projected on the wall and are captured 
by a camera. The parameters used in the experiments are 
consistent with those used in the simulations above.

G-S
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MSE:0.0027

G-S

SGD

SGD

PSNR:29.49
MSE:0.0011

G-S

G-S

SGD
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Fig. 9. The schematic of the experimental setup (P1, 2 
polarizer, C&E collimator and expander, L lens, BS 
beam splitter)

Fig. 10. demonstrates the effectiveness of our proposed 
method. The simulated image and the experimental result of 
our U-net are shown in Fig. 10(a). The size of the projection 
image on the wall is 15.36cm×8.64cm, which is consistent 
with the simulated result. We then compared the 
reconstruction quality of GS holography, SGD method and our 
U-net in Fig. 10(b). All of them are based on the DSFD 
algorithm. Compared with the reconstruction results of 
iterative method, the U-Net method can achieve qualified 
digital holography reconstruction. 

The results show that our DSFD-Net model has great 
potential for designing a lensless holographic projection 
system with large FOV. Besides, current methods using 
machine learning for calculating diffraction process are 
basically for simple diffraction algorithms, such as the S-FFT 
algorithm and the angular spectrum diffraction algorithm. For 
different tasks, the corresponding machine learning machine 
methods and systems have their own adaptations. Whether 
machine learning algorithms can be applied to more complex 
algorithms such as the DSFD algorithm is still unknown. In 
this paper, we use machine learning for DSFD algorithms with 
calculation of multiple diffraction processes and varying 
sampling frequencies to demonstrate that machine learning 
can be applied to different types of diffraction algorithms and 
that the corresponding CGHs can be calculated in real-time. 
However, the proposed method still has some unsolved issues. 
For example, training a digital hologram of a high-resolution 
image using a convolutional neural network requires a very 
large GPU memory size. At the current stage, it is difficult for 
the proposed method to further increase the image resolution 
with available GPUs. In the next work, we will try to compress 
the size of neural network and find other network structures to 
adapt our method to higher resolution images. In the future, 
we will continue to study the algorithm of CGH, especially 3D 
digital holography based on machine learning.

Fig. 10. (a) Simulation optical image and the 
experimental result based on U-net (b) Comparison of 
reconstruction quality of different encoding method.

5. Discussion
In this paper, the machine-learning techniques are 

introduced to generate the hologram used in an image 
magnified lensless holographic projection system. Compared 
to the iterative method, neural network can compress 
computation time to several milliseconds level. Meanwhile, 
the neural network can match various projection systems to 
meet the corresponding requirement of the near-eye display 
devices. The proposed method is applicable to augmented 
reality displays, virtual reality displays and hopefully other 
real-time 3D display systems in future.
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