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Abstract. Recently, deep learning has been used to establish the nonlinear and nonintuitive mapping 
between physical structures and electromagnetic responses of meta-atoms for higher computational 
efficiency. However, to obtain sufficiently accurate predictions, the conventional deep-learning-based 
method consumes plenty of time to collect the dataset, thus hindering its wide application in this 
interdiscipline. Herein we introduce a spectral transfer-learning-based metasurface design method to 
achieve excellent performance on a small dataset with only 1000 samples in the target waveband by 
utilizing open-source data from another spectral range. We demonstrate three transfer strategies and 
experimentally quantify their performance, among which the “frozen-none” one robustly improves the 
prediction accuracy by ~26% compared to direct learning. During the training process, we propose to 
use a complex-valued deep neural network to further improve the spectral predicting precision by ~30% 
compared to its real-valued counterparts. Several typical terahertz meta-devices are designed by 
employing a hybrid inverse model consolidating this trained target network and a global optimization 
algorithm. The simulated results successfully validate the capability of our approach. Our work shown 
here provides a universal methodology for efficient and accurate metasurface design in arbitrary 
wavebands, which will pave the way toward the automated and mass production of metasurface.
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1 Introduction

Metasurface,1 a 2D array consisting of sub-wavelength artificial meta-atoms, has 

increasingly shown its compact dimension and design flexibility in the control of 

electromagnetic (EM) waves, which arouses widespread research enthusiasm in optics 

and photonics of multiple wavebands. The intriguing advantages of metasurface enable 

versatile functionalities such as focusing,2-5 beam steering,6, 7 vortex generation,8-10 

polarization control,11-13 holography,14-16 and so on. The common methodology of 

metasurface design is a one-time and trial-and-error process relying much on physical 
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insights and experience, and the practical pattern of metasurface comes from the 

manually iterative numerical calculations, such as the Finite Elements Method and the 

Finite Difference Time Domain method, until the desired performance criteria are 

reached. The search procedure for geometrical parameters of meta-atoms is not only 

time-consuming and inefficient but also easy to miss the global optimal solution, which 

is more defective as the dimensions of the variables or objective functions increase. To 

overcome these limitations, deep learning as a powerful computational tool has been 

employed in the metasurface design,17-22 which is capable to reveal the underlying 

nonlinear and nonintuitive relations between the geometrical parameters and EM 

responses of the meta-atoms in a real-time and automatic way.23, 24 As a result, the well-

trained deep neural networks (DNN) acting as a surrogate model can effectively replace 

the commercial EM simulation software with high prediction accuracy and orders of 

magnitude faster calculation speed.25-31

However, the current deep-learning-based methods face the contradiction between 

efficiency and accuracy, because they usually resort to a specific huge dataset for 

reliable performance owing to their data-hungry nature. Collecting adequate data is 

slow and expensive while training a DNN from scratch also costs considerable time 

consumption and computing resources. Once the feature space or distribution is 

changed, even though slightly different from the source task, the trained model may 

work ineffectively. To make the deep-learning-based methods more versatile for 

metasurface design, some solutions have been proposed to improve the model 

performance with a small dataset. Transfer learning is a helpful framework that shares 

the knowledge and experience learned from the source model with the target one, so 

that reduces the amount of required data and implements the prediction rapidly with 

high accuracy. In nanophotonics and metasurface design, transfer-learning-based 

methods are used to migrate knowledge between different physical scenarios such as 

photonics films with different numbers of layers,32 and dielectric meta-atoms with 

different shapes or dimensions of cross sections.33, 34 Also, the knowledge from other 

research fields can also be leveraged to study metasurfaces through transfer learning. 

For example, the meta-atoms are treated as images by using the transfer learning model 

based on GoogLeNet-Inception-V3 and realize the classification of phase from 0 to 360 

degrees.35 In addition to the transfer-learning-based method, data augmentation36 and 

spectral scalability37 were explored to reduce the dependence on data size. Whereas, 

previous works are limited to a fixed spectral range of the labeled dataset. Once the 
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range of the working waveband or the number of the sampling points changes, a new 

model is necessary to be trained and the training dataset should be re-prepared for this 

new task. Especially when material dispersion in different bands is considered, the scale 

invariance of Maxwell’s equations is no longer applicable. And the method that exploits 

the spectral scalability by wavelength normalization trying to address this problem still 

suffers from a sudden deviation from the simulation data near the boundary of the 

waveband range which means the EM responses of the meta-atoms are not perfectly 

scalable.

In this work, we introduce a metasurface design methodology empowered by 

transfer learning that utilizes the commonality of the EM characteristics of the dielectric 

meta-atoms in different spectral ranges, therefore reducing the amount of data by 

bridging the disparity of working frequencies. Specifically, we train the base model on 

an open-source dataset25 in the infrared (IR) band from 30 to 60 THz and then store the 

knowledge gained in solving the source task, and transfer it to our terahertz (THz) 

spectral range from 0.5 to 1.0 THz to help the target task which is trained on our small 

homemade dataset. Here a complex-valued fully connected network that achieves high-

performance spectral predicting ability is used in the source model, with an 

improvement of ~30% compared to the sum of its real-valued counterparts. We 

demonstrate three transfer strategies and experimentally quantify their performance, 

among which the “frozen-none” one improves the prediction accuracy by ~26% 

compared to direct learning. Further, we propose several typical THz meta-devices 

including a metalens and a vortex beam generator by employing the hybrid inverse 

model consolidating this trained target network and a global optimization algorithm as 

a proof-of-concept application. The simulated results clarify the reliability and 

scalability of our spectral transfer-learning-based metasurface design methodology 

assisted by complex DNN(CDNN), which is of great significance for balancing the 

efficiency and accuracy of the deep-learning-based method, hence promoting 

metasurface studies in arbitrary wavebands.

2 Results

2.1 Overall Framework of the Metasurface Design Methodology

Figure 1 schematically illustrates the spectral transfer-learning-based metasurface 

comprehensive design framework, which consists of three primary submodules: 1) A 
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deep-learning-based forward prediction source model trained on the massive open-

source labeled data; 2) A target model benefited from the knowledge transferred from 

the source model, which is then fine-tuned with a small home-made dataset; 3) A hybrid 

inverse model for the on-demand metasurface design implemented by combining the 

trained target model with the conditioned adaptive particle swarm optimization 

(CAPSO) algorithm. The required transmission spectrum is fed into the inverse model 

as the design goal to retrieve the geometrical dimensions of the candidate meta-atoms, 

which are evaluated by comparing the predicted EM responses output from the well-

trained target model and the desired goal. Then the optimization algorithm iteratively 

updates the generated dimensions until the maximum epoch or convergence criterion is 

reached. The efficacy of our proposed methodology is ultimately demonstrated by the 

performance of the metasurface assembled from the optimal meta-atoms at each 

position.

Fig. 1 Flowchart of the spectral transfer-learning-based metasurface comprehensive design methodology 

assisted by the complex-valued deep neural network. 

2.2 Source Spectral Model Construction

The source model is a data-driven feed-forward neural network, consisting of 11 fully 

connected layers, which is aimed at dealing with the regression problem between the 

structure parameters and the EM responses of the meta-atoms. The fully connected 

network is capable of unveiling this implicit nonlinear relationship in a simplified and 
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stable form, especially when the variables can be parameterized as tensors. Here, the 

input and output parameters of the network as well as all the hyperparameters (weights 

 and bias ) of each layer are extended to the complex domain to directly predict 𝑾 𝒃

the complex transmission coefficients of meta-atoms, from which the phase and 

amplitude can be derived monolithically. In addition, the corresponding network 

functions, such as normalization, loss, nonlinear activation and regularization functions 

should also be adjusted to the form suitable for complex numbers. More detailed 

information about the CDNN has been included and discussed in the first section of the 

Supporting Information. Using complex parameters has numerous advantages, 

including a richer and more versatile representation capacity and a more robust memory 

retrieval mechanism, which has been demonstrated to improve the performance of the 

computer vision and audio signal processing tasks based on the CDNN compared to 

their real-valued counterparts.38 And the architecture of CDNN is depicted in Fig. 2a. 

The Source-CDNN is first trained on the publicly released dataset, containing ~60000 

 pairs of geometrical parameters and the real/imaginary parts of {𝑫,(𝑅𝑒 (𝑻),𝐼𝑚 (𝑻))}
transmittance of the meta-atoms in the IR band. The input layer takes in a dimension 

tensor  of size 4 including permittivity , radius , height , and the gap  𝑫 𝝐 𝒓 𝒉 𝒈

between adjacent meta-atoms, and the output tensor  is the complex transmission 𝑻

coefficient sampled over 30- 60 THz with an interval of 1 THz, giving a total of 31 

elements. The supervised training process is conducted by minimizing the mean 

squared error (MSE) between the prediction result generated from the network and the 

ground truth given by full-wave simulations:

(1)𝑀𝑆𝐸 =
1
𝑚∑𝑚

𝑖 = 1(𝑻 ― 𝑻)(𝑻 ― 𝑻 ∗ ) =
1
𝑚∑𝑚

𝑖 = 1[(Re (𝑻) ― Re (𝑻))2
+ (Im (𝑻) ― Im (𝑻))2],

where  is the number of the spectrum points,  and  are predicted and simulated 𝑚 𝑻 𝑻

transmission, respectively.  is the complex conjugate of . The  and  𝑻 ∗ 𝑻 Re Im

functions represent taking the real and imaginary parts of a complex number.

Among the total dataset, a 70/30 split for the training and test dataset is assigned. 

As the learning curve shown in Fig. 2b, the overall test MSE is ~1.05×10-4 after 50000 

epochs. And Fig. 2c displays an MSE histogram of the predicted transmission from the 

test set, showing an average MSE of 1.048×10-4 and a 95% data demarcation line < 

3.5×10-4, consistent with the low prediction error exhibited by the CDNN after training. 

Once the complex transmission coefficients are determined from the network, the 

corresponding phase and amplitude are calculated monolithically at each frequency as 
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shown in the right part of Fig. 2a. Several samples are randomly selected from the test 

set as presented in Fig. S1, from which we can see that the network prediction results 

are in good agreement with the simulated truth values even at those resonant frequency 

points, which demonstrates that CDNN has reasonably high predicting accuracy. To 

clarify the efficacy of the CDNN, we also trained two real-valued deep neural networks 

with real (RDNN) and imaginary (IDNN) parts as outputs, respectively. Detailed 

information of these two networks is described in the first section of Supporting 

Information. The MSE of the CDNN is ~30% less than the sum of the MSE of the 

RDNN and IDNN which are both ~7.5×10-5 after 50000 epochs, indicating that the 

CDNN has superior performance compared with its real-valued counterparts. Given the 

vital role the source model plays in our transfer-learning-based method, such high 

generalized predicting accuracy is critical to ensure the target model acquires 

sufficiently reliable knowledge to facilitate the on-demand metasurface design in the 

target task.

Fig. 2 Schematic of the source model. (a) Illustration for the architecture and the parameters of the CDNN. 

(b) Learning curves of the CDNN that take the loss value as the function of the epoch. The smoothed 

train loss (blue curve) and test loss (red curve) are shown on the original learning curves (light gray). (c) 

Histogram of the MSE for the predicted complex transmission from the test set, where 95% of the data 

have an MSE < 3.5×10-4, as indicated by the gray dashed line. 
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2.3 Transfer Knowledge to Target Spectral Model

Benefiting from the knowledge learned by the source model, the target model is trained 

on the target frequency domain (0.5 to 1.0 THz) to predict the complex transmission 

coefficients of the meta-atoms with a relatively small dataset of 1000 samples. The 

relation of the interest bands of the source task and target task of spectra transfer 

learning is depicted in Fig. 3a. The target dataset of cylindrical-shaped all-dielectric 

meta-atoms is established via the commercial software CST Microwave Studio under 

x- polarized normally incident light from 0.5 to 1.0 THz. In this home-built library, each 

meta-atom is determined by the same four geometry parameters as the above-mentioned 

ones in the open-source dataset but within a different range. The ranges of the four 

parameters are , , , and  (all in μm). And 𝜀 ∈ [10,20] 𝑟 ∈ [5,65] ℎ ∈ [3,65] 𝑔 ∈ [5,95]

the complex transmission coefficients over the whole spectrum are sampled into 51 

frequency points with an interval of 0.01 THz. The simulation details are described in 

the first section of Appendix. Then we employ transfer learning to help train the target 

neural network. The target model has the same network structure as the source model 

except for the output layer, whose dimensionality can be adjusted according to the 

sampling points of the target spectrum and in our case there are 51 dimensions.
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Fig. 3 Schematic of transfer learning. (a) Diagram of the relation of interest bands of the source and 

target task. (b) Illustration of spectral transfer learning. The top row is the architecture of the source 

model (blue), and the next rows are the target models (orange) based on three transfer strategies: “frozen-

none”, “copy-all” and “hybrid-transfer”, respectively. Blue blocks represent the copied layers from the 

trained source network and then be fine-tuned during training. Orange blocks represent the fine-tuned 

layers with random initialization. And the Mosaic pattern represents the frozen state. Black rounded 

rectangles represent activation layers.

We propose three transfer learning strategies as depicted in Fig. 3b: 1) The target 

network copies the first k layers from the source model as the initialization of weights 

and bias and the remaining layers of the target network are randomly initialized with a 

normal distribution. The entire target network is fine-tuned simultaneously to be trained 

on the target dataset and model, called “frozen-none” strategy. 2) The target network 

copies all hidden layers (except for the last one due to the mismatch of the dimensions) 

from the trained source model as the initialization of all hyperparameters. During the 

training process, the first k layers are frozen, meaning that they do not change with 

training, and only the remaining layers are fine-tuned, called “copy-all” strategy. 3) The 
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target network copies the first k layers from the source model and freezes them, whereas 

the remaining layers are initialized and fine-tuned, called “hybrid-transfer” strategy. 

Further details of the training setup (learning rates, etc.) are given in the second section 

of the Supporting Information. As the major challenge in transfer learning is to select 

the general layers and specific layers to avoid the negative transfer between the source 

and target tasks, we conduct three sets of experiments to determine the best transfer 

learning strategy as well as the most appropriate number of the transfer layers. The 

learning curves of these three strategies are shown in Fig. 4a, and the colors from dark 

to light indicate the number of transfer layers from less to more, i.e. from 1(0) to 10(9). 

We aim not to maximize the absolute performance of the target model, but rather to 

verify that the transfer-learning-based method has advantages over direct learning. By 

comparing their performances on the same dataset under consistent experimental 

conditions, we can see that in the “frozen-none” case, the test error is ~3.4×10-3 if 

trained from scratch, whereas it is around 2.7×10-3 with the transferred knowledge no 

matter how many layers are copied. The prediction accuracy is improved by about 26% 

through transfer learning. In addition, the loss function of transfer learning converges 

earlier than that of direct learning, manifesting a faster training speed. It takes an 

average of 72 minutes per 10000 epochs of training on our computer equipped with an 

Nvidia RTX 3090 GPU and our training process runs about 15000 iterations to 

converge. In the other two cases, the test error is either higher or lower than that of 

direct learning as the number of transfer layers changes, which depends on the 

generality and specialization of different layers as well as the co-adaptation between 

neighboring layers.39 Our results show that the “frozen-none” strategy has stronger 

robustness than the other two, which can achieve higher accuracy than direct learning 

without careful parameter tuning, indicating it is more applicable for the spectral 

transfer target task. 
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Fig. 4 Results of the spectral transfer learning. (a) Clusters of learning curves of three transfer strategies: 

“frozen-none” (red), “copy-all” (blue), and “hybrid-transfer” (orange). The colors from dark to light 

indicate the number of transfer layers from less to more. (b) Examples demonstrating the performance 

of the target-CDNN using transfer learning.

Specifically, we use the "frozen-none" method of copying the first 7 layers to train 

the target-CDNN and test the generalization performance on the test set. Several typical 

test examples are presented in Fig. 4b. These examples illustrate that the predicted 

spectra are in good accordance with the simulated ones in the regions no matter where 

the fluctuation is gentle or violent. It is also worth mentioning that this process only 

takes several milliseconds to calculate the transmission coefficients over the whole 

bandwidth under consideration of each meta-atom. Such prediction accuracy and 

efficiency are crucial for the on-demand metasurface design in the inverse model as 

will be discussed in the next section.

2.4 Hybrid Inverse Model for the On-demand Metasurface Design 

The core objective of the spectral transfer-learning-based method is the efficient and 
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accurate on-demand metasurface design in the interested band. We divide the design 

task of the whole metasurface into the independent search for each meta-atom 

according to the phase and amplitude distribution oriented by functionality. In order to 

identify the optimal structure parameters at each pixel of the metasurface while 

avoiding the exponential growth of the simulation time during the iterations, we 

propose a hybrid inverse model that combines the data-driven deep learning method 

with the rule-driven global optimization algorithm. In this model, the trained target-

CDNN is regarded as an EM simulator to replace the traditional EM simulation 

software, which can precisely predict the transmission coefficients at an extremely high 

speed. And the CAPSO algorithm performs to be a fast generator and a powerful 

optimizer of the meta-atoms. Specifically, the geometrical parameters given by CAPSO 

are fed into the target-CDNN to predict the corresponding complex spectrum tensor, 

from which the extracted phases and amplitudes at certain frequencies are evaluated by 

quantifying the discrepancy between the current results and the goals. The optimal 

parameters are successively updated in iterative runs to reduce the value of the loss 

function as Eq.2 shows until the maximum epoch is reached: 

    (2)𝐿𝑜𝑠𝑠 =
1
𝑛∑𝑛

𝑖 = 1(|𝜑𝑔𝑜𝑎𝑙(𝜆𝑖) ― 𝜑𝑜𝑝𝑡𝑖𝑚𝑎𝑙(𝜆𝑖)| + 𝜂 × |𝐴𝑔𝑜𝑎𝑙(𝜆𝑖) ― 𝐴𝑜𝑝𝑡𝑖𝑚𝑎𝑙(𝜆𝑖)|),

where n is the number of the target frequencies,  and  are the phase and amplitude 𝜑 𝐴

at a certain frequency and the subscripts  and  represent the target and 𝑔𝑜𝑎𝑙  𝑜𝑝𝑡𝑖𝑚𝑎𝑙

the current optimum value.  is a customized preset weight factor, whose value 𝜂

depends on the role of the amplitude playing in the functional devices.

Instead of constructing an inverse or tandem deep neural network commonly used 

in the metasurface inverse design,29, 40, 41 we employ this hybrid model chiefly for these 

two reasons: 1) Previous inverse networks take the entire spectrum tensor as the input, 

which is suitable for the amplitude-functional devices in the continuous band, such as 

the filter, absorber, resonators. Whereas most phase-gradient metasurfaces only care 

about the EM responses at one or several frequencies, leaving alone the others. If the 

randomly assigned transmission is too different from the ones in the dataset, the inverse 

network is almost impossible to output a reliable structure owing to non-uniqueness (a 

spectrum can be generated by multiple structural parameters, or no set of structural 

parameters can produce such a spectrum); 2) the inverse model with the optimization 

algorithm can be readily modified to meet diverse design goals and restrictions.42 For 

example, we can impose a constraint inequation on the parameter gap to alleviate the 
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coupling among adjacent meta-atoms. We can also design frequency multiplexing 

devices with different numbers and values.

2.5 Meta-device Design and Verification

To verify the efficacy of our proposed hybrid inverse model, first we quickly design a 

focusing cylindrical metalens through this method. The ideal phase retardation 

provided by the metalens can be written as the function:

                       (3)𝜑(𝑥,𝜔) =
𝜔
𝑐 ( 𝑥2 + 𝑓2 ― 𝑓),

where c is the light speed in vacuum, ω is the angular frequency,  is the distance 𝑥

between a meta-atom and the center of the metalens, f is the focal length. In this design, 

the metalens with the diameter of 12.15 mm and the focal length of 20 mm is to focus 

the transmitted waves at 0.95 THz. Each column of the metalens is composed of 81 

meta-atoms, and the dimension tensor  of each meta-atom is optimized 𝑫 = [𝜀,𝑟,ℎ,𝑔]𝑇

iteratively according to Eq. 2 in turn with calculated by Eq. 3 and set as 𝜑𝑔𝑜𝑎𝑙 𝐴𝑔𝑜𝑎𝑙 

0.5. Figure 5a and 5b show the target phase and amplitude profiles of the metalens as 

well as the phase and amplitude responses of optimized meta-atoms selected by the 

hybrid inverse model at each pixel, which match each other fairly well. The detailed 

procedures and resulting parameters of this model are described in Sections 3 and 4 of 

the Supporting Information. The metalens is then investigated by using CST 

Microwave Studio, where the metalens is placed on the z = 0 plane with the center set 

at the origin. The optical axis is set as the z-axis with the open boundary condition 

adopted in x-direction and the periodic boundary condition adopted in the y-direction. 

And the metalens is illuminated by x- polarized plane waves. Figure 5d depicts the 

normalized far-field intensity distribution of this metalens, which is in good agreement 

with the theoretical calculation derived by the Rayleigh Sommerfeld diffraction integral 

formula in Fig. 5c. The results confirm the validity of the hybrid inverse model and 

further demonstrate the reliability of our CDNN-based transfer model. 
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Fig. 5 Characterization of the metalens designed by the hybrid inverse model. (a) and (b) are the target 

phase and amplitude profiles (blue lines) and the phases and amplitudes of the optimized meta-atoms at 

each pixel selected by our inverse model (red hollow circles). (c) and (d) are the theoretical and simulated 

normalized intensity distributions of the designed metalens along the propagation plane.
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Fig. 6 Characterization of the meta-vortex generator designed by the hybrid inverse model. (a) The 

structure pattern, phase and amplitude distributions of the designed meta-vortex generator output from 

the hybrid inverse model. (b) and (c) are the theoretical and simulated results for the phase, real part and 

normalized intensity distributions along the xy- and yz plane of the designed meta-vortex generator.

To further verify the efficiency and versatility of our method, we design a two-

dimensional meta-device for generating the focused THz vortex beam based on the 

function as follows: 

                      (4)𝜑(𝑟,𝜔) =
𝜔
𝑐 ( 𝑟2 + 𝑓2 ― 𝑓) +𝑙𝜃,

where  is the polar coordinate of a meta-atom, and  is an integer representing (𝑟,𝜃) 𝑙

the topological charge and related to the orbital angular momentum. The meta-device 

is aimed to generate a 2nd-order vortex beam ( ) operating at 0.95 THz, consisting 𝑙 = +2

of 61×61 meta-atoms with a lattice size of 150 μm and each of them is automatically 

determined by the hybrid inverse model. Figure 6a shows the optimized results of the 

structure pattern, phase and amplitude distributions for the designed meta-vortex 

generator. The whole prediction process only takes about 600 seconds, with an average 

time of less than 0.1 s for each meta-atom. Its performance is then evaluated by using 

CST Microwave Studio, where the meta-vortex generator is placed on the z = 0 plane 

with z-axis as the optical axis. With the open boundary condition being applied, the 
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linearly-polarized Gaussian waves with a waist radius of 3 mm incident on the meta-

vortex generator. Figure 6c depicts the simulated results including phase, real part and 

normalized intensity distributions, which are in good agreement with the theoretical 

calculations derived by the Rayleigh Sommerfeld diffraction integral formula in Fig. 

6b. The deterioration of the simulated results is suggested to be caused by the finite 

hexahedral mesh limited by the computer memory and the unavoidable coupling among 

adjacent meta-atoms.

3 Discussion and Conclusions

In conclusion, we developed a spectral transfer-learning-based comprehensive 

methodology assisted by CDNN for the realization of the balance between 

computational efficiency and prediction accuracy to further help with the automated 

on-demand metasurface design in arbitrary wavebands. We explored the spectral 

transfer-learning strategy to ease the burden of large data volume requirements by 

migrating the learned knowledge from the original band to the target one by exploiting 

the commonality for EM properties of the all-dielectric meta-atoms with the same 

geometrical shape but in different spectral ranges. We proposed to utilize CDNN to 

train the source model on the given cheap dataset which obtains a fairly low prediction 

error of 1.05×10-4 with an improvement of ~30% compared to its real-valued 

counterparts. And we demonstrated that transfer learning can improve the prediction 

accuracy by ~26% in a quite shorter time compared to direct learning on the same small 

dataset with only 1000 samples through the robust transfer learning strategy named 

“frozen-none”. For proof-of-concept, we presented a focusing metalens and a meta-

vortex generator working at 0.95 THz by utilizing the hybrid inverse model that 

combines the well-trained target-CDNN with the CAPSO algorithm. The simulated 

results of these designed meta-devices agreed well with the corresponding theoretical 

calculations, consequently validating the capability of the proposed comprehensive 

framework. In the view of the underlying logic of our work, the deep-learning-based 

network is proposed to address the time and computing costs of the conventional 

simulation tools for metasurface design and modeling, i.e. our network aims at the 

numerical simulation process to demonstrate that the spectral transfer method is an 

efficient alternative to the consumed electromagnetic simulation software and human 
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experience. As for the experiment demonstration, it will be the application of a well-

trained feed-forward network. Our results show the potential to synchronously improve 

both the efficiency and accuracy of the deep-learning-based method, which will 

facilitate the fast and reliable metasurface design in arbitrary frequency bands, thus 

promoting the substantial application of deep learning in these disciplines such as meta-

optics, spectral recognition and resolution enhancement. 

Appendix A: Python-CST co-simulation

A.1 Random Generation of Meta-atoms and Establishment of Datasets

During the target dataset establishment, the co-application of Python and CST 

automates the numerical simulations in a batched manner. The CST package provides 

a Python interface to the CST Studio Suite, which allows controlling a running 

simulation or reading the results of project files. First, we need to start a CST 

environment and create a new CST project. Then we edit the VBA codes to set up the 

model, materials, simulation conditions, and so on. Dimensions of the meta-atoms are 

randomly generated within their respective ranges, and they are constructed on top of a 

fused silica substrate with the thickness of 120 μm and the fixed lattice size of 150 μm. 

Each meta-atom is simulated under the x-polarized plane wave by Frequency Domain 

Solver with the Tetrahedral mesh type. Periodic and perfect matched layer (open) 

boundary conditions are used along the transverse (x- and y-) and longitudinal (z-) 

directions with respect to the propagation of light. A field probe is placed at z = 2000 

μm to detect the transmission spectrum of the meta-atom, which can be derived from 

the 1D results. One loop is completed for each simulation run, and the number of loops 

is the size of the target dataset. 

A.2 Arrange the Layout of Metasurfaces

During the verification process, the co-application of Python and CST automates the 

arrangement of the metasurface layout. Similarly, we start a CST project and initialize 

the settings. Then we input the dimension parameters of each meta-atom into CST and 

place them according to their corresponding positions through VBA codes, to arrange 

them into a whole metasurface in order. The meta-device is simulated under an x-
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polarized plane wave by Time Domain Solver with a time duration of 500 ps. The 

boundary conditions in the propagation direction are set as open, and those in the x- and 

y- directions are set as open (for 2D meta-devices such as metalenses, vortex generators, 

and holographic plates) or period (for 1D meta-devices such as cylindrical metalenses, 

and deflectors) as needed. Field monitors are placed according to the location of the 

electric field to be observed. Corresponding codes are provided by authors.
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