Generation of subwavelength inverted pin beam via fiber end integrated plasma structure

Zhengchuan Cai1,2,5, Zhiqiang Quan3,4,5, Libo Yuan1,2, Jian Wang3,4,*, and Houquan Liu1,2,*

1. Photonics Research Center, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
2. Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
3. Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
4. Optics Valley Laboratory, Wuhan 430074, Hubei, China
5. These authors contribute to this work equally.

* Corresponding author: jwang@hust.edu.cn; houquanliu@163.com.

Abstract: Pin-like beam is a kind of novel structured light with a special intensity distribution that can against diffraction, which can be seen as a kind of quasi non-diffracting beam (Q-NDB). Due to their wide applications, recently, numerous researchers have used optical lenses or on-chip integrated optical diffractive element to generate this kind of beams. In this paper, we theoretically verify and experimentally demonstrate an all-fiber solution to generate subwavelength inverted pin beam by integrating simple plasma structure on the fiber end-surface. The output beams generated by two kinds of plasma structure, i.e., nanoring slot and nano-petal structure, are investigated and measured experimentally. The results show that both the two structures are capable of generating subwavelength beams, and the beam generated using the nano-petal structure has the side lobe suppression ability along x axis direction. Our all-fiber device can be flexibly inserted into liquid environments such as cell cultures, blood, and biological tissue fluids to illuminate or stimulate biological cells and molecules in them. It provides a promising fiber integrated solution for exploring the light-matter interaction with subwavelength resolution in the field of biological applications.

Keywords: inverted pin beam; fiber-integrated plasma structure; subwavelength resolution

1. Introduction

With the rapid development of science and technology, decomposing complex and macroscopic mechanisms in the spatial dimension into nanoscale simpler elementary ones is one of the most commonly used research approaches to explore new knowledge within physics, chemistry, and biology. In order to realize such decomposition, from the research perspective of modern optics, the most effective approach is to generate nanoscale structured light beams
and then use them to realize various kinds of light-matter interactions to monitor [1, 2] and control [3, 4] the basic units of matter such as cells [4], molecules and even atoms [5]. For example, researchers have utilized the localized fields of nanoslit waveguide to capture and manipulate nanoscale dielectric particles and DNA molecules [6, 7]; the scattering fields radiated from heterojunctions composed of gold nanoparticle and mitochondrial cytochrome c to monitor quantum biological electron transfer in living cells [8]; and the nondiffracting superchiral optical needle to realize circular dichroism imaging of sparse subdiffraction objects [9]. Such nanoscale light-matter interactions can provide unprecedented new techniques and opportunities for the development of numerous disciplines.

Consequently, the generation of novel subwavelength structured light beams has attracted extensive attention in recent years [10, 11]. Using high numerical aperture objectives or spatial light modulators (SLMs) [12] is the traditional method for generating subwavelength structured light beams. However, these traditional methods require optical components with a large footprint and low integration. With the continuous pursuit of highly integrated photonic devices, designing on-chip integrated photonic devices to generate subwavelength structured light beams has become a cutting-edge hotspot and research focus. Important recent research results include using metasurface [11, 13] or specially designed diffractive element [14] to generate far-field subwavelength structured light fields; and using coupled nanowire pairs [15] or on-chip integrated plasmonic structures, such as dual nanopore structure [16] to obtain highly localized near-field optical hotspots. Although these on-chip photonic devices can achieve a very high degree of integration themself, it is usually necessary to use optical elements such as objective lenses to build strictly aligned optical paths to couple the incident light to the corresponding devices. This may become an obvious shortcoming in some specific practical application scenarios. For example, when exploring the interaction between the subwavelength structured light and subcellular structures in a cell, living cells are generally in biological tissue solution or culture fluid, so that the on-chip integrated subwavelength structured light beam generator should also be placed in the tissue solution, which poses a challenge to the alignment of the optical path as well as reduces its adjustment flexibility. At the same time, the scattering of the incident light by the tissue solution also significantly affects the quality of the generated subwavelength structured light, which is not conducive to the practical applications. Optical fiber is another important light modulation platform distinguished from traditional optical lens component and on-chip integrated optical platform. Optical fiber has the large aspect ratio with the transverse size of 100 \(\mu m \) order of magnitude, so that it is easy to realize integrated applications, such as integrated on microfluidic chip to meet the demand of high degree of...
integration. On the other hand, optical fiber confines light filed in the core resulting in flexible optical path regulation capability and strong anti-jamming ability. Therefore, using fiber integrated photonic devices, light can be flexibly guided into a variety of turbid media, such as tissue solution, blood, etc. for biological applications, which can avoid the shortcomings of on-chip integrated photonic devices to a certain extent. Since the concept of "lab-on-fiber" was proposed, much attention has been paid to the generation and modulation of various kinds of structured light by preparing special structures on optical fibers. For example, vortex beam [17], Airy beam [18], one-dimension Bessel beam [19], and light-sheet beam [20] are generated by twisting the fiber, preparing metasurfaces [21-23] and plasmonic lenses [19], etc., on the fiber end-surface; and focused light field is generated by fiber tapered tip obtained via polishing, tapering, or etching optical fiber [24, 25]. Although significant application values in a wide range of fields from orbital angular momentum multiplexing communications to optical manipulation have been demonstrated, these output optical fields have transverse dimensions much larger than the light wavelength. Thus, how to compress the spatial dimensions of the optical fiber output fields to subwavelength or even deep subwavelength scales is a key issue for applying it to investigate nanoscale light-matter interactions. Although nanoscale plasmonic optical hotspots have been achieved by fabricating metallic plasmonic probe [26] as well as bowtie plasmonic aperture [4] on the fiber end-surface, the plasmonic field is a near-field with an extremely short working distance. To date, the flexible generation of far-field subwavelength structured light beams using optical fiber still remains challenging.

At the same time, non-diffracting beam (NDB) is a kind of interesting light beam. The fascinating characteristic of NDB is that it is able to overcome spatial diffraction during propagation and has self-recovering property. This property can significantly reduce the interference of the environment on the optical signals in imaging, communication, and other applications. Thus, since the first non-diffracting Bessel beam was generated by Durnin [27, 28], overcoming optical diffraction so as to obtain NDB has long been an active research. To date, a great deal of research has been carried out on NDB, including the generation of NDBs [29, 30], and their important applications in optical manipulation [31, 32], quantum information [33], super-resolution imaging [34], and numerous other fields. Recently, a novel kind of quasi non-diffracting beam(Q-NDB) that has a Bessel-like transverse profile and a width gradually expanding during propagation, is of great concern. This kind of beam was initially treated as a kind of non-diffracting beams [35]. While recently, it has been explicitly classified as inverted pin beam (IPB) [36], a subclass of pin-like beams [37-38]. Researches have shown that pin-like beams can realize a more robust propagation compared to the standard Gaussian beam in many
environment situations. However, the lateral sizes of the most reported pin beams are much larger than the light wavelength. It is obvious that the next worthwhile topic is to generate such interesting beams at subwavelength and even deep subwavelength scale.

Therefore, developing fiber-integrated photonic devices to generate far-field subwavelength beam is both interesting and challenging. In this paper, two kinds of fiber-integrated plasma structures are theoretically designed and experimentally fabricated to achieve subwavelength inverted pin beam (IPB). It is demonstrated that, if the device operates in the air environment, the full width at half maximum (FWHM) of the central intensity lobe of the IPB is small than the half of the wavelength when its transmission distance from the fiber end-surface is less than 6 μm, and the FWHM maintains subwavelength scale when the transmission distance is less than 10 μm. If the device operates in the blood serum and glycerol environments, the FWHM of the central intensity lobe can maintain small than half of the wavelength when the transmission distance is less than 10 μm. Since the transmission distance of 10 μm is sufficient for the IPB to extend into the interior of a cell and then interact with the subcellular structure without the fiber invading the cell. Our all-fiber IPB generator provides a promising fiber integrated solution for exploring the light-matter interaction with subwavelength resolution in the field of biological applications, such as live cell optical microsurgery, super-resolution microscopic imaging, etc.

2. Results

Generation principle of IPB

The schematic diagram of our all-fiber IPB generator is shown in Fig. 1. In the generator, one end of a graded index multimode fiber (MMF) with a specific length is fused with a single-mode fiber (SMF), the other end of the MMF is polished and plated with nano-gold film, and then surface plasma structure is prepared on the gold film. When the device is working, the optical field radiating from the SMF is first expanded in the MMF and subsequently irradiates the plasma structure to excite plasmon waves, and then the excited plasmon waves will couple into the free space via the plasma structure and produce the subwavelength IPB. In this scheme, expanding the optical field using the MMF aims to provide more space for the flexible design of the plasma structures. In the three-dimensional (3D) schematic diagram of Fig. 1(a), the plasma structure illustrated is a nanoring slot with inner radius and external radius being and , respectively. Figure 1(b) shows the schematic diagram of the measurement system for measuring the far-field transversal optical intensity distributions generated by the fiber plasma structure. The single-wavelength laser is coupled into the IPB generator through a single-mode fiber, and the imaging system is a Nikon microscope which consists of a 100x objective lens.
with NA=0.9, tube lens (TL), and charge-coupled device (CCD) with single pixel 7×7 μm². The IPB generator is fixed on a high-precision displacement table. During the movement of the displacement table, the imaging system can observe the far-field intensity distribution of the IPB with different propagation distances.

Fig. 1. (a) The 3D schematic diagram of the all-fiber far-field IPB generator. SMF is a single-mode fiber and MMF is a graded index multimode fiber. The \(r_1 \) and \(r_2 \) in the inset are the inner and external radius of the nanoring slot plasma structure, respectively, and the white circular region denotes the area of the gold film that has been etched. (b) The measurement system for observing the far-field of the IPB generated by the fiber integrated plasma structure.

Assuming that \(f(x, y) \) is the mode field distribution function at the output face of the MMF (i.e., \(z=0 \) plane) and \(C(x, y) \) is the aperture function of the plasma structure, according to the Rayleigh-Sommerfeld diffraction formula, the output optical field can be expressed as:

\[
E(x, y, z) = \frac{1}{i\lambda} \iiint f(x', y')C(x', y') \frac{z}{p} \exp(ikp)dx'dy',
\]

(1)
where λ is the incident wavelength; $k = nk_0$ is the wavevector with n and k_0 being the refractive index of the external environment and the wavevector in vacuum, respectively; and,

$$p = \sqrt{[(x - x') + (y - y')]^2 + z^2},$$ \hspace{1cm} (2)

Considering the center of the nanoring slot is located on the central axis of the MMF, and the width of the slot is much smaller than the wavelength, i.e., $\Delta r = r_2 - r_1 = \lambda$, the aperture function $C(x,y)$ can be rewritten as

$$C(r, \theta) = \delta(r - r_1),$$ \hspace{1cm} (3)

in polar coordinate system, where $\delta(\cdot)$ represents the Dirac function. In this case, as the mode field distribution of the fiber has circular symmetry, the mode field distribution function can be considered to be a constant $f(r_1)$. According to these, under considering $r_1 = 7 \mu m$, the incident wavelength is 980 nm, and the external environment is air, i.e., $n=1$, the normalized intensity distributions of the output optical field simulated via the analytic equation (1) are shown in Fig. 2. Figure 2(a) is the normalized intensity distribution in the x-z plane; Figs. 2(b1)-(b4) are the normalized intensity distributions on the x-y plane with different transmission distances of 4 μm, 5 μm, 6 μm, and 7 μm from the end face of the MMF (i.e., $z=0$ plane); and Figs. 2(c1)-(c4) are the corresponding normalized intensity distributions on the x-axis, in which the black arrow marks the FWHM of the central main intensity lobe. It can be found that the output light is a IPB [36], and the FWHM of the central main intensity lobe is smaller than half of the wavelength ($\lambda/2 = 490 nm$) when the transmission distance is less than 6 μm. In essence, this IPB is an optical superoscillation generated by the superposition of the spatial high frequency angular components diffracted via the nanoring slot as shown by the red dashed line in Fig. 1.
Fig. 2. The normalized intensity distributions of the output optical field simulated via the analytic equation. (a) The normalized intensity distribution in the x-z plane. (b1)-(b4) The normalized intensity distributions on the x-y plane with different transmission distances of 4 \(\mu \)m, 5 \(\mu \)m, 6 \(\mu \)m, and 7 \(\mu \)m, respectively. (c1)-(c4) The normalized intensity distributions on x axis extracted from the results of (b1)-(b4), respectively.

Experimental generation of IPB via nanoring slot

As shown in Fig. 1, the optical field needs to be expanded to provide more space to design the structure structure. For the nanoring slot structure with an inner radius of 7 \(\mu \)m, if the optical field is not expanded via MMF, the radius of the mode field in the SMF core should be much smaller than 7 \(\mu \)m, which will result in that the structure can not be illuminated at all. Therefore, the length of the fused MMF will affect the far-field distribution of the output light. We calculate the optimal fusion length of the MMF by Rsoft simulation. The SMF and the MMF selected in the simulation are coherent 980-xp SMF (Coherent company) and OM1 graded refractive index MMF (Yangtze Optical Fibre and Cable Joint Stock Limited Company), respectively. The simulation results are displayed in Fig. 3. Fig. 3(a) is the normalized intensity distribution of the optical field in the x-z plane when the light is coupled from the SMF to the MMF, from which we can see that fusing a 250 \(\mu \)m long MMF to the SMF can achieve an
optimal beam expansion. Figs. 3(b) and 3(c) are the normalized intensity distributions of the optical field on the x-y plane and along the x-axis after being expanded by 250 μm long MMF. The blue curve in Fig. 3(c) is the simulation result extracted from Fig. 3(b).

Fig. 3. Normalized intensity distributions of the optical field of the MMF. (a) Normalized intensity distribution on x-z plane. (b) Normalized intensity distribution on x-y plane after being expanded by 250μm MMF. (c) Normalized simulation and experiment intensity distributions on x-axis after being expanded by 250μm MMF.

Based on the simulation results, we fuse a 250 μm long MMF to the SMF and polished the end-surface of the MMF. Then we measure the normalized intensity distribution of the optical field along the x-axis, and the experimental result is shown as the red curve in Fig. 3(c). It can be seen that the experimental result is highly consistent with the simulation one, and the optical field follows Gaussian distribution with an FWHM of 20 μm. The surface morphology of the MMF end-surface, as shown in Fig. 4(a), is measured by using a 3D morphometer microscope (sneox-IFU90). By extracting the surface height distribution in the horizontal direction of the MMF end-surface, it can be seen that the surface height drop is only 20 nm in the center region of the MMF end-surface with 40 μm diameter, as shown in Fig. 4(b), which is suitable for processing plasma structure structure. The scanning electron microscope (SEM) image of the fabricated nanoring slot with $r_1=7$ μm and $r_2=7.2$ μm is shown in Fig. 4(c).
Fig. 4. Sample characterization. (a) The 3D morphology measurement result of the polished fiber end-surface. (b) The morphology measurement result along the x-axis of the polished fiber end-surface. (c) The SEM images of the fiber end-surface and the nanoring slot.

In the experiment, a 980 nm wavelength laser is selected as the incident light. During the measurement process, the all-fiber IPB generator is fixed on an electronically controlled nanodisplacement table, and the fiber end-surface is defined as the original plane ($z = 0$). The nanodisplacement table is used to move the end-surface of the subwavelength beam generator with a precision of 200 nm step-by-step, so that the intensity distribution of the output optical field at different transmission distance can be observed and recorded experimentally. Figures 5(a1)-(a4) show the observed light intensity distributions on the x-y plane at different distances ($4 \mu m$, $5 \mu m$, $6 \mu m$, $7 \mu m$) from the fiber end-surface. Then the intensity distributions along the x-axis of the four corresponding planes are extracted from Figs. 5(a1)-(a4) and compared with the simulation results, as shown in Figs. 5(b1)-(b4), where the red curves are the experimental results and the blue curves are the simulation ones. The FWHM of the experiment results is 378 nm (0.385λ), 428 nm (0.436λ), 450 nm (0.459λ), and 504 nm (0.514λ), respectively. Therefore, the generated optical field with subwavelength resolution ($<\lambda/2$) when the propagation distance is less than $6 \mu m$, which fits well with the theory. Meanwhile, we extract the light intensity distributions along the x-axis of different transmission distances in the range of $4 \mu m \leq z \leq 10 \mu m$ with 200 nm step precision, and then splice the extracted results to obtain the intensity evolution of the light along the propagation direction, as shown in Fig. 5(c). It can clearly reveal that the output light generated by the plasma nanoring slot is a IPB, and the intensity evolution is in high agreement with the simulation result shown in Fig. 2(a). Figure 5(d) shows the simulation and experimental results of the FWHM of the main lobe of the IPB at different
transmission distances. It can be seen that the FWHM obtained from experimental measurements increases with propagation distance, and the FWHM of the IPB is smaller than \(\lambda/2 \) under \(z \leq 6 \, \mu\text{m} \). This trend is consistent with the simulation results. However, the FWHM of the experimental results are slightly larger than that of the simulation results, which may be due to the imperfections in the device fabrication process.

![Fig. 5.](image)

(a1)-(a4) The observed intensity distributions of the output light on \(x\text{-}y \) plane at \(z=4 \, \mu\text{m}, 5 \, \mu\text{m}, 6 \, \mu\text{m}, \) and \(7 \, \mu\text{m} \), respectively. (b1)-(b4) The comparison of the simulation and experiment results of the normalized light intensity distributions along \(x \) axis of \(z=4 \, \mu\text{m}, 5 \, \mu\text{m}, 6 \, \mu\text{m}, \) and \(7 \, \mu\text{m} \) planes. (c) The experimental result of the intensity distribution of the output light on \(x\text{-}z \) plane. (d) The variation of the FWHM of the IPB’s main lobe with the propagation distance in different environments. (e) The normalized intensity distributions on the center axis of the IPB in blood serum environment with different absorption loss.

We can further find that the FWHM remains subwavelength scale even though the propagation distance from the fiber end-surface reaches 10 \(\mu\text{m} \). This makes the beam ideal for realizing non-invasive single-point illumination or targeted stimulation of subcellular structures inside a living cell, such as organelles, biomolecules, or nano size pharmaceutical particles, thus allowing for the study of relevant life processes at single-cell level through light-matter interactions on subwavelength scale. It should be noted that, however, the above experimental
results are obtained in the air environment. Usually, cells can only survive in liquid environments such as cell culture fluid, blood, and biological tissue fluid. Therefore, it is necessary to study the output optical field of our all-fiber IPB generator in the liquid environment. However, due to the lack of a water immersion objective, we do not have the experimental condition to measure the intensity distribution of the output optical field when the device is placed in a liquid environment. Fortunately, the correctness of the theoretical formula (1) is fully proven by that the experimental results are in good agreement with the simulation results when the device is placed in the air environment. Therefore, we can also effectively evaluate the transmission evolution of the output light theoretically when the generator is placed in a liquid environment. For this, the variations of the FWHM of the main lobe with the transmission distance when the device is placed in blood serum and glycerol solutions were simulated, respectively. The simulation results are shown as the green and orange solid lines in Fig. 5(d). In the simulation, the refractive index of glycerol and blood serum solutions are choosen to be 1.473, and 1.344 [39]. It can be seen that by placing the device in a medium with a refractive index greater than that of air, such as blood serum and glycerol, the FWHM of the IPB will be further reduced, and even if the transmission distance reaches 10 μm, the FWHM will still be smaller than the half of the wavelength, so that it is expected to achieve light-matter interactions in a living cell with higher precision. Moreover, in order to evaluate the influence of the transmission loss of the blood serum environment on the evolution of the IPB beam, we calculated the evolution of the normalized intensity on the center axis of the IPB beam during its propagation in blood serum environment with different absorption coefficients α, and the simulation results are shown in Fig. 7(e). It can be seen that since the distance of the optical field propagation is only 10 microns scale, the effect of loss on the intensity evolution is negligible.

Generation of subwavelength beam with side lobe suppression characteristic

Although it has been demonstrated that the fiber end integrated nanoring slot can generate IPB with subwavelength resolution effectually, the obtained IPB is accompanied by strong side lobes, which may limit its field of view and, hence, potential applications. Suppressing the strong side lobes can overcome this deficiency. For side lobes suppression, Yanwen Hu et al. [40] have proposed a sharp-edge diffraction element consisting of a pair of moonlike sharp-edge apertures, which can generate an optical superoscillation with low side lobe in a particular dimension. Motivated by this, we design and fabricat a nano-petal plasma structure structure on the end-surface of the fiber to produce a subwavelength beam with side lobes suppressed in two
dimensions. The design process of the nano-petal structure is depicted in Fig. 6(a). Initially, the central axis of the fiber is considered as the center of the circles C_1 and C_2 with radius $r_1 = 7 \mu m$ and $r_2 = 5 \mu m$, respectively. Then, the circles C_3, C_4, C_5, and C_6 are obtained by shifting C_2 along the negative x-axis, positive x-axis, positive y-axis, and negative y-axis with displacement $d = 4 \mu m$, and finally, the gold film in the parts of circles C_3, C_4, C_5, and C_6 that do not intersect with circle C_1 are etched off to form the nano-petal structure. The aperture function of this nano-petal structure is:

$$C(x, y) = \left\{1 - \text{circ} \left(\frac{\sqrt{x^2 + y^2}}{r_1} \right) \right\} \times \left\{ \text{circ} \left(\frac{\sqrt{(x+d)^2 + y^2}}{r_2} \right) + \text{circ} \left(\frac{\sqrt{(x-d)^2 + y^2}}{r_2} \right) \right\} + \left\{ \text{circ} \left(\frac{\sqrt{x^2 + (y+d)^2}}{r_2} \right) + \text{circ} \left(\frac{\sqrt{x^2 + (y-d)^2}}{r_2} \right) \right\}.$$

(4)

The SEM image of the nano-petal structure etched on the fiber end-surface is presented in Fig. 6(b). Figures 6(c) and (d) illustrate the simulation and experiment intensity distribution of the output light of the nano-petal structure with a transmission distance of 6 μm from the fiber end surfaces, i.e., $z = 6 \mu m$. The results clearly show that it can effectively suppress the side lobes of the output field in two dimensions, i.e., in both the x-axis and y-axis directions.

Fig. 6. (a) Schematic of the nano-petal structure etched on the fiber end-surface. (b) The SEM image of the nano-peta plasma structure. (c), (d) the simulation and experimental results of the optical intensity distribution with a propagation distance of 6 μm, respectively.
To evaluate the generated subwavelength beam with side lobes suppression in more detail, we first experimentally measure the output light intensity distributions along the x-axis with transmission distances of 4 μm, 5 μm, 6 μm, and 7 μm from the end-surface of the fiber, and compare them with theoretical simulation results. The comparison results are shown in Fig. 7. It can be seen that the FWHM of the main lobe is 407 nm (0.415λ), 411 nm (0.419λ), 516 nm (0.527λ), and 529 nm (0.540λ) at 4 μm, 5 μm, 6 μm, and 7 μm, respectively. It can be found that before 5 μm, the FWHM of the generated IPB is smaller than half of the wavelength.

Fig. 7. The normalized intensity distributions along x axis of the nano-petal plasma structure with different transmission distances, 4 μm (a), 5 μm (b), 6 μm (c), and 7 μm (d), respectively. (e), (f) Comparison of the side lobe suppression effect of the nanoring slot and nano-petal plasma structures. The Proportional value is defined as the ratio of the maximum light intensity of the first-order side lobe to that of the main lobe.

Then to provide a clear demonstration of the side lobe suppression effect of the nano-petal structure on the x-axis direction, we extract the ratio between the maximum intensity of the first-order side lobe and the maximum intensity of the main lobe from the light intensity distributions along the x-axis. The extracted results of the output IPBs from both nanoring slot and nano-petal structures are shown in Figs. 7(e) and 7(f), in which Fig. 7(e) is the result obtained via theoretical simulation, Fig. 7(f) is the result extracted from the experimental results. The simulation results show that within the range of $4 \mu m \leq z \leq 9 \mu m$, the ratio of the output beam of the nano-petal structure is smaller than that of the nanoring slot along x axis, especially at the distance of $z=7 \mu m$, the ratio of the output beam of the nano-petal structure decreases to 8%, implying that the nano-petal structure has a significant side lobe suppression effect along
x axis. The experimental results can demonstrate the side lobe suppression effect of the nano-petal structure in the same transmission distance range. However, both the output beams of the nano-petal and nanoring slot exhibit higher experimental side lobe strengths compared to the simulated results. This discrepancy may be attributed to imperfections in the device preparation process. Nevertheless, these imperfections do not prevent the ability of the nano-petal structure of suppressing the side lobes in the x-axis direction. Since for the output beam of the nano-petal structure, the maximum intensity of the first-order side lobe locates on the 45-degree axis, we further investigated the ratio between the maximum intensity of the first-order side lobe and the maximum intensity of the main lobe from the light intensity distributions along the 45-degree axis, and show the theoretical and experimental results in Figs. 7(e) and 7(f). It is shown that on the 45-degree axis, the ratio of the output beam of the nano-petal structure is larger than that of the nanoring slot. This implies that the side lobe suppression effect of the nano-petal structure on the x-axis direction comes at the expense of side lobe enhancement in the 45 degree axis direction.

3. Discussion
In the above, we have demonstrated how to generate subwavelength IPB using fiber end integrated plasma structure in detail. The main lobe of the IPB generated by the nanoring slot can remain its FWHM at subwavelength over a propagation distance of 10 μm, and the subwavelength beam generated by the nano-petal structure can exhibit side lobe suppression characteristic. These allow the beam to be used for non-invasive illumination or directional stimulation of subcellular structures, such as organelles and biomolecules, inside living cells for biological applications, such as high-resolution imaging and light-matter interaction research in single cell. It, therefore, can provide a compact fiber-integrated solution for studying life processes at the single cell level, which may be important and promising in future biological and medical researches.

Nevertheless, the all-fiber subwavelength IPB generator proposed in this paper still has some aspects worthy of further study. Firstly, comparing the simulation results with the experimental results of the light intensity distributions of the subwavelength beams generated both by the nanoring slot and the nano-petal structure, i.e., the results of Figs. 5(b1)-(b4) and Figs. 7(a)-(d), it can be found that although the intensity distributions of the main lobes obtained from the experiment measurement match well with the simulation results, the side lobe intensities obtained from the experimental measurement are larger than that of the simulation results, and the experimental results do not have left-right symmetry. Multiple factors may contribute to this phenomenon. For example, it may be due to that there exists an offset between
the center of the plasma structure and that of the output optical field of MMF fiber, which may be caused by the inherent off-axis amount of the fiber core or the fact that the center of the plasma structure is not aligned with the central axis of the fiber in the fabrication. It can also be caused by the 3D roughness of the polished fiber end surface (e.g., slight left-right asymmetry can be seen in Fig. 4(b)), which will make the etched depths of the plasma structure without strict symmetry, resulting in an asymmetry excitation efficiency. Therefore, when considering the fabricating error, how to design a plasma structure with higher error tolerance to obtain higher quality IPB is worthy of further study. Secondly, the subwavelength IPB generator designed in this paper can only generate single IPB. In the future, designing a variety of novel plasma structure to generate more diverse structured light fields at the fiber end, such as composite beam containing multiple subwavelength IPBs, chiral beams, and vector beams, may promote the realization of more flexible biological applications of the fiber end optical field.

ACKNOWLEDGMENTS

Funding. This work was supported by the National Natural Science Foundation of China (NSFC) (62205079, 62065006, 62125503, 62261160388); the Natural Science Foundation of Hubei Province of China (2023AFA028); the Innovation Project of GUET Graduate Education (2023YCX214); the Innovation Project of Optics Valley Laboratory (OVL2021BG004).

AUTHOR DECLARATIONS

Conflict of interests

The authors declare no competing financial interests.

Author contributions

Houquan Liu proposed the original idea. Zhengchuan Cai (equal), Zhiqiang Quan (equal), Houquan Liu analysed the theoretical model and constructed the simulation model. Zhengchuan Cai (equal), Zhiqiang Quan (equal), Houquan Liu designed the experiment and processed the results. Zhengchuan Cai (equal), Zhiqiang Quan (equal) wrote the initial manuscript. Jian Wang, Libo Yuan, Houquan Liu consupervised the project and reviewed the manuscript.

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Received: ((will be filled in by the editorial staff))

15
References

37. Z. Zhang et al., "Robust propagation of pin-like optical beam through atmospheric turbulence," *APL Photonics* 4, 076103 (2019).
40. Y. Hu et al., "Optical superoscillatory waves without side lobes along a symmetric cut," *Advanced Photonics* 3(04), (2021).