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Abstract

Planar cameras with high-performance and wide field-of-view (FOV) are critical in 

various fields, requiring highly compact and integrated technology. Existing wide 

FOV metalenses show great potential for ultra-thin optical components, but there are 

a set of tricky challenges like chromatic aberrations correction, central bright speckle 

removal, and image quality improvement of wide FOVs. In this paper, we design a 

neural meta-camera by introducing a knowledge-fused data-driven (KD) paradigm 

equipped with transformer-based network. Such paradigm enables the network to 

sequentially assimilate the physical prior and experimental data of the metalens, and 

thus can effectively mitigate the aforementioned challenges. An ultra-wide FOV 

meta-camera, integrating an  off-axis monochromatic aberration-corrected 

metalens with a neural CMOS image sensor without any relay lenses, is employed to 

demonstrate the availability. High-quality reconstructed results of color images and 

real scene images at different distance validate that the proposed meta-camera can 
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achieve ultra-wide FOV (> 100-degree) and full-color image with the correction of 

chromatic aberration, distortion and central bright speckle, and the contrast increase 

up to 13.5 times. Notably, coupled with its compact size (<0.13 cm3), portability, and 

full-color imaging capabilities, the neural meta-camera emerges as a compelling 

alternative for applications such as micro-navigation, micro-endoscopes, and various 

on-chip devices.

1 Introduction

 Conventional cameras are renowned for their large imaging field of view and 

unparalleled image quality. Due to the use of complex optical components for aberrations 

correction, it has a bulky architecture and faces the challenges of high-precision alignment. 

With the advancement of technology, the miniaturization, lightweight and portability 

cameras1-3 are increasingly desired in autonomous driving, endoscopic medical, and 

consumer electronics. Therefore, there is an urgent need for planar and high-performance 

optical components to implement wide FOV on-chip cameras.

Recently, metalenses composed of subwavelength artificial structures have garnered 

attention for their compactness, as a potential alternatives to bulky and complex optical 

instruments4-9. Metalens exhibits superior optical performance due to its ability to 

precisely manipulate the incidence beam;10-15 however, it still remains challenge 

of aberration correction, in particular for chromatic aberration and off-axis monochromatic 

aberration. To eliminate chromatic aberration, dispersive propagation phase and 

dispersive-free geometic phase have been introduced to achieve broadband16-19 and multi-

wavelength20-22 achromatic metalenses. Due to the limitation of the group delay dispersion 
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of meta-atoms, achromatic metalenses are usually implemented on paraxial. In the off-axis 

case, a lot of efforts have been made to correct the off-axis 

monochromatic aberrations of the metalens. By introducing ray tracing method,23-27 

Fourier analysis28 and metalens array29, cascaded metalens located on either side of the 

substrate23-25 and single wide FOV metalens with an aperture26,27 can correct off-axis 

monochromatic aberrations and achieve diffraction-limited imaging over wide FOV. 

However, chromatic aberration correction, central bright speckle, and image quality 

improvement of wide FOV metalens in the off-axis are rarely considered. Obviously, 

addressing the aforementioned issues of wide FOV metalens relies on the above existing 

methods remains a considerable challenge.

To improve the image quality of metalens, traditional image restoration computational 

imaging methods2,22,30,51,52 are introduced, and they usually recover images based on simple 

hypothesis or enhance images through multiple-image super-resolution.2,22,30 However, the 

factors influencing the imaging quality of current ultra-wide FOV metalens are intricate, 

making it difficult to improve the imaging quality based on a single hypothesis. Recent 

years, several methods are proposed to incorporate neural networks for improving the 

imaging quality of metalens or diffractive optical elements, which use point spread 

functions (PSFs) to train models.31-35 Unfortunately, single-wavelength ultra-wide FOV 

metalens have complex PSFs spatial variation in different incident angles at other 

wavlengths, which makes it fail to accurately model the imaging degradation by applying 

the above PSFs method. Even worse, the central bright speckle indicates that there is 

inconsistence between the simulation data and the actual scene, which makes it more 
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difficult to improve the imaging quality of ultra-wide FOV metalens by the prior PSFs 

method.

With the advancement of deep learning36 research, transformer modules based on 

attention mechanisms have been developed and demonstrated to be effective in cutting-

edge studies such as AlphaFold2,37 GPT,38 large image-text models, etc. Compared to CNN 

networks constructed with local convolutional kernels, the multi-head self-attention 

mechanism enables the transformer module to effectively model long-range dependencies, 

which is conducive to better modeling of wide FOV metalenses’ non-focused diffusion 

spots and information expansion problems. It is expectable that incorporating transformer 

methodology into wide FOV metalens imaging is a good choice to cope with more complex 

PSFs spatial variations so as to largely improve the quality of imaging.

   In this work, we demonstrate a highly miniaturized neural meta-camera in conjunction 

with ultra-wide FOV metalens assembled on a CMOS image sensor. The proposed 

metalens has a full FOV of nearly 140°, and achieves a diffraction-limited resolution of up 

to 1.55 µm at the center of the image side. The volume of neural meta-camera is 9.07 × 

9.07 × 1.57 mm3, which is integrated based on precision assembly platform. 

   Based on this meta-camera, we propose the knowledge-fused data-driven (KD) 

paradigm to address image degradation problem. A characteristic of the proposed KD 

paradigm is to first initializes the transformer-based neural network using the PSF 

estimation in unsupervised manner, and then the data acquired from the meta-camera is 

used to further fine-tune the neural network. In this way, a customized neural network can 

be trained to recover a range of imaging quality problems for the ultra-wide FOV metalens. 

The experiments on simple, cartoon and complex scene images validate that our method 
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solves the chromatic aberration, distortions and central bright speckle of the meta-camera. 

Our work shows that the neural meta-camera can achieve ultra-wide FOV and full-color 

imaging, which is also difficult to obtain with conventional complex cameras. 

2 Methods

2.1 On chip neural meta-camera model

    Here, we demonstrate a miniature neural meta-camera for ultra-wide FOV and full-

color imaging supported by transformer-based image recovery neural network (Fig. 1). The 

network is a typical multi-scale attention architecture and trained under the guidance of the 

KD paradigm so as to improve the reconstructed image quality. As identified by yellow 

arrows in Fig. 1, the paradigm includes prior knowledge from simulated PSFs and data-

driven measurements from meta-camera, incorporating prior and measured datasets to 

initialize and fine-tune the network. On the other hand, the processing flow of the image 

recovery neural network follows the green arrows in Fig. 1. The images captured from the 

ultra-wide FOV meta-camera are reconstructed into ground-truth-like full-color images by 

the recovery neural network. With the help of the computility of the graphics processing 

units (GPU), the model can conveniently repair the chromatic aberration, distortion, stray 

speckles, and background noise of the meta-camera.

2.2 Design principle of ultra-wide FOV metalens

  Recently, some approaches have been proposed for aberration correction and fast design 

of metasurface, such as hyperbolic phase profile,12-15 quadratic phase optimization based 

on ray tracing,25-27 gradient-based local optimization,21 inverse design,39-41 and 
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combination of deep neural networks.31-35,39-42 Here, in order to obtain ultra-wide FOV and 

accurate off-axis aberration correction on a CMOS image sensor plane [Fig. 2(a)], the 

phase profile of a 140° wide FOV metalens is optimized by ray tracing method.25-27 Such 

metalens is composed of a 220-µm-diameter aperture and a 1.54-mm-diameter metasurface 

that are located on both sides of a 0.7-mm-thick fused silica substrate, with an effective 

numerical aperture of 0.167 and an operating wavelength of 532 nm. The fact that the root 

mean square spot diagrams [right of Fig. 2(a)] on the sensor plane at different angles of 

incidence are all-in the radius of Airy disks, indicates the metalens’ diffraction-limited 

performance with negligible monochromatic aberrations. We further simulate the alphabet 

image to illustrate good imaging performance in whole FOV with clearly distinguishable 

alphabet letters [Fig. S1(a)].

The metasurface contains Si nanoposts with different diameters arranged in 

quadrilaterals and covered by 1-µm-thickness silicon dioxide protective layer. The phase 

coverage of 2π can be well achieved in seven selected nanoposts, with the average over 95% 

transmission at normal incidence and decreasing value at off-normal. Note that the phase 

will shift accordingly when oblique as well. See more detail in angle-dependent phase and 

transmission maps by rigorous coupled wave analysis44 in Figs. S1(b-c). We emphasize the 

fact that the simulated modulation transfer function (MTF) curves of the metalens at 

different incident angles are very close to the diffraction limit case [Fig. 2(b)], 

demonstrating the effectiveness of the metalens for aberration correction over a wide full-

FOV. At different incidence angles, the simulated focusing efficiency of the metalens are 

31.5%~66.25%, and decreases with the increase of incident angle due to the phase shift 

and non-uniform transmittance of nanoposts as the incident angle changes [Fig. S1(b-c)]. 
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2.3 Demonstration of ultra-wide FOV metalens

The ultra-wide FOV metalens is fabricated by electron beam lithography (EBL) and 

inductively coupled plasma-chemical vapor deposition (ICP-CVD). The aperture and 

metasurface are aligned through alignment marks patterned on both sides of a substrate 

(Fig. S2). Top-view scanning electron microscope (SEM) images of the fabricated 

metasurface, highlighting the excellent fabrication quality [Fig. 2(c)]. 

To evaluate the optical performance of the naked ultra-wide FOV metalens sample, we 

used an experimental setup that enables the metalens focusing a collimated light from 

different angles and the focused spots well-going into a rear microscopic system [Fig. 

S3(a)]. One can see from Fig. 2(d) that, the measured focal lengths (blue solid box) and the 

image heights (red solid box) are close to the simulations (dotted lines) from 0° to 70° at a 

center wavelength of 532 ± 5 nm. Note that the image height is defined as the offset position 

of focal PSFs from the optical axis center in the focal plane. The results show the capability 

of the metalens for full FOV angular position, ensuring the accurate match between the 

metalens imaging plane and the CMOS image sensor. In addition, we compare the 

simulated and measured focal spots, full width at half maximums (FWHM) values and 

corresponding MTF curves of different incidence angles. More details can be found in Fig. 

S3. 

To characterize the imaging resolution capability of the designed metalens, we use the 

measurement configuration shown in Fig. S4(a). The USAF 1951 resolution test chart is 

illuminated by the lamp with different narrowband filters, and the images can be captured 

by the microscopic system, including an objective lens, adapter tube lens and a CMOS 
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sensor. The resolution test chart is fixed on the image plane and the microscopic system 

moves along the optical axis to make the image clear. Fig. 2(e) shows the projected images 

of the USAF 1951 resolution test chart at the angle of 0° and a center wavelength of 532 

nm. The linewidth and gap in the vertical lines (yellow) and horizontal lines (orange) of 

element 3 in group 8 are clearly distinguished, and the corresponding contrast values are 

35.9% and 37.5%, respectively [right side of Fig. 2(e)]. The contrast value is the ratio of 

the difference and sum of the maximum and minimum intensities. The contrast values are 

all above 20%, indicating that the resolution of the metalens in the center is 1.55 μm close 

to the diffraction-limited resolution (λ/2NA). The resolution results at wavelengths ranging 

from 488nm to 680nm are also shown in Fig. S4(b). We observe that the central field 

resolution of the ultra-wide FOV metalens is close to the diffraction limit at a single 

wavelength in the visible band. 

 To further characterize the wide FOV imaging capability, we select the number "7" 

of the USAF 1951 resolution test chart for imaging. By changing the filters and turning the 

rotary stage, the images with projection angles from 0° to 70° can be captured at different 

wavelengths. When the angle of the rotary stage is 65°, the projected image of the number 

"7" reflects the angle range of about 63° to 70°. Fig. 2(f) shows the projected images of the 

number "7" with projection angles of 0°, 10°, 20°, 30°, 40°, 50°, and 65° at the wavelength 

of 532 nm. The contours of number “7” can be easily identified in the projected images at 

all angles, confirming the wide FOV imaging performance of the metalens. Additional 

experimental images of the number “7” at other wavelengths are shown in Fig. S4(c). Note 

that the distorted images with a projection angle greater than 40° is the inherent distortion 

of all wide FOV imaging systems, and it can be corrected by mature algorithms. As a result, 
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the wide FOV imaging ability of ultra-wide FOV metalens is confirmed by clearly 

demonstrating the projection imaging in the range of 0~70° half-FOV. 

2.4 KD paradigm with transformer-based network 

   Due to its self-attention mechanism design, transformer module can capture longer 

distance context relationships, which can be interpreted as a global relationship modeling 

for image processing tasks.44 In the design of ultra-wide FOV metalens at single-

wavelength, PSFs of other wavelengths often suffer from severe mass loss, manifesting 

itself in the form of unconcentrated energy distribution, unfocused diffuse spots (Fig. S5), 

etc. These problems make the modeling of ultra-wide FOV metalens imaging more difficult 

for neural networks, and previous work has used traditional neural network architectures;45 

however, the existing methods are still struggling to deal with such complex degradations. 

Fortunately, the transformer-based networks can handle the complex degradation described 

above for the ability of modeling long-distance dependencies.

In addition to the network structure, it is pointed out that the training paradigm is also 

crucial. Considering the incompleteness of the theoretical simulation of the imaging 

process and the difference between theory and actual fabrication, the distortion and central 

bright speckle of the ultra-wide FOV metalens in visible spectrum imaging hinder learning 

an effective model based on the pure theoretical approximation. Recent research have 

shown that deep learning models trained at large-scale on similar tasks can learn 

transferable domain knowledge, so that it can be adapted to downstream tasks by transfer 

learning manner.46 Therefore, we propose a two-stage paradigm to train a transformer 

network to recover the chromatic aberrations, distortion, and central bright speckle in the 
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metalens imaging. 

    Fig. 3 illustrates the proposed KD paradigm, including two stages of prior knowledge 

and data-driven. In the first stage shown in Fig. 3(a), we leverage the prior knowledge of 

metalens design to initialize the model with design parameters of metalens in an 

unsupervised manner. Then we perform data-driven learning to refine our neural network 

based on the collected real data in the second stage shown in Fig. 3(b) to drive its 

performance close to conventional commercial lens. We use the same attention-based U-

structured neural network47 (right part of Fig. 3) in both stages, so we can extract multi-

scale features and ensure that the recovered images of metalens are semantically consistent 

at various scales, producing high-quality image as expected. Note that the model is 

optimized differently in the two stages, and we use the same loss function based on mean 

squared error in both stages as well.

Specifically, we first use the theoretical design parameters of the metalens and the 

theory of angular spectral propagation to simulate the PSF sets of the metalens in different 

FOVs and wavelengths.31 Since the design of the metalens is circularly symmetric, it is 

convenient to rotate these PSFs to obtain approximate PSFs of full fields collection. 

      
（1）])(),,([),,()( Hmeta ΙmagepsfmaskΙmage 

 
  

where means simulated image corresponding to wavelength ,  metaΙmage )( 

, are mask and PSF in theory corresponding to FOV , rotation ),,( mask ),,( psf 

angle  and wavelength 
 

respectively, and  represents an image   HΙmage )(

corresponding to wavelength  to be convolved. It is worth noting that, compared to 

previous works that convolve images with PSF of a single incident angle at each 
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wavelength,32 we incorporate the PSF of all incident angles into the simulation, so that we 

are able to take into consideration the strong variations of the PSF at non-designated 

wavelengths during our modelling. The detailed processing about PSFs generation can be 

found in Supplementary Information Section S3. Note that the dataset we collect includes 

the aberration information of each FOV, so that our initialized neural network can capture 

the prior knowledge about the aberration distribution of the imaging, allowing the network 

to achieve faster convergence and better performance in the second stage. 

We use the data-driven approach instead of the measured PSFs set-driven method31,32 

in the second stage to circumvent the following problems. Existing single-wavelength wide 

FOV metalens with a small front aperture have central bright speckle problem at non-

designed wavelengths, which become serious by the increase of incident angle. 

Unfortunately, so far there are no accurate theoretical model to estimate the central bright 

speckle. Moreover, the intensity variation and spatial inhomogeneity of PSFs at different 

angles of incidence and at non-designed wavelengths, making it difficult for the measured 

PSFs set to restore the real image effect. With such large differences in PSFs intensities, 

the measured PSFs set ensemble will have a greater loss of precision, resulting in a more 

tedious and arduous task to measure PSFs set than our data-driven method.

   In the second stage [Fig. 3(b)], we build an image acquisition processing system to 

efficiently acquire real data for fine-tuning our model. The image acquisition processing 

system shots the images displayed on the LCD screen (Portkeys LH5P Ⅱ, 5.5″, 1920×1080) 

as the scenes, imaged by a conventional commercial lens (Sigma Art Zoom lens) or 

metalens, and finally collects the image pair captured by the CMOS sensor (eg. IMAX 335) 

and commercial Sony sensor (eg. A7M3, Sony) respectively. More details about this image 
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acquisition processing system can be found in Supplementary Information Section S4. The 

Supplementary Information Section S5 further describes our data processing procedures, 

that is once the process is established, it may be possible to cascade data processing flows 

and neural networks to quickly process imaging. The ablation experiments shown in 

Supplementary Section S7 demonstrate the effectiveness of our method.

    In addition, we enhance the model by using the equivariant in imaging process 

throughout the experiment by the following formula:

     
 (2))()( IpsfTIT 

where T is a particular transformation, Ⅰ is the imaged object, and PSF is the point spread 

function corresponding to the one-to-one imaging process. By utilizing the equivariant of 

physical processes to augment data, the model can discover potential physical properties 

for better robustness on unseen data.48 

3 Results

3.1 Naked metalens for neural imaging 

To demonstrate the performance of the ultra-wide FOV metalens combined with the 

neural network, we conduct an experimental comparison by imaging different types of 

images in the image acquisition processing system. Considering the trade-off between data 

collection cost and recovery effectiveness, we collected 1,000 images to validate our 

approach, 800 as training data and 200 as test data. As shown in Fig. 4(a), the image data 

of scence (eg. projected by the LCD screen) are imaged by the naked ultra-wide metalens, 

and then captured by the microscopic system consisting of a 10× objective 
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(MPLFLN10xBD, Olympus), an adapter tube lens (1-62922, NAVITAR), and a COMS 

sensor (A7M3, Sony). Original images captured by the metalens and corresponding 

recovery results from our neural networks, Unet & KD paradiagm (Unet trained with KD 

paradigm) and other traditional image enhancement algorithms are shown in Fig. 4(b). 

Compared with the unrecovered image of the naked ultra-wide FOV metalens on the 

leftmost of Fig. 4(b), the contrast and sharpness of the images restored by the sharpened 

Laplacian algorithm and the Multi-Scale Retinex with Color Restoration (MSRCR) 

algorithm are not improved much due to uncorrected background noises. The images 

recovered by Unet & KD paradiagm can effectively eliminate the central bright speckle, 

but the contrast and sharpness of the images are not good enough. In contrast, high-contrast 

and panchromatic aberration correction images can be recovered by our method 

(transformer-based neural network trained with KD paradigm). From the zoom-in images 

in Fig. 4(b), it is clear that the contrast of the object's contour boundaries has been well 

refined, and the contour boundaries no longer have color overlay vignetting due to 

magnification chromatic aberration. More information on the comparison of other 

traditional convolutional networks with our image recovery neural network (transform-

based network) are provided in Section S8 of the supplementary materials. Therefore, our 

image recovery neural network offer a considerable enhancement in colour similarity, 

contrast and edge sharpness compared to traditional algorithms and other traditional 

convolutional networks. 

3.2 Meta-camera for neural imaging 

 To demonstrate a proof-of-concept application, we package the metalens with a 
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CMOS image sensor into a miniature and portable meta-camera with a volume of 9.07 × 

9.07 × 1.57 mm3. Fig. 5(a) shows the photograph of the meta-camera system, including the 

diaphragm, sleeve, base, CMOS image sensor (IMX335, Sony), and core optical element 

of wide FOV metalens. The advancement of our proposed compact integration approach is 

that we have built a precision assembly platform to ensure the integrated camera modules 

are versatile and practical. The professional design of the support structure greatly reduces 

the complexity and difficulties caused by inclination and eccentricity in assembly. The 

most critical step in the assembly process is to ensure that the distance between the 

metalens sample and the CMOS sensor is accurate enough. For this purpose, the thread 

structure is designed and manufactured between the sleeve and the base to facilitate precise 

adjustment of the image clarity of the camera module. In addition, to ensure an accurate 

bond between the components, we use ultraviolet curing adhesive for sealing with a curing 

time of two minutes.

     To exhibit the capability of the neural meta-camera, we placed an LCD screen at 

different working distance from the meta-camera so that it could capture images with a 

large FOV [Fig. 5(b)]. Following the setting in the metalens demonstration, we use 800 

images for training and 200 images for evaluation. Fig. 5(c) shows the results at working 

distance of 2 cm before and after recovery of the neural meta-camera and the neural ultra-

wide FOV metalens. Compared to the ultra-wide FOV metalens, the original images 

captured by meta-camera have a more severe central bright speckle and color cast. The 

exacerbation of the central bright speckle is due to the burr and irregular shape of the 

aperture of the diaphragm caused by processing error, while the color cast is derived from 

the difference in spectral response curve of CMOS image sensors between commercial 
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Sony sensor (A7M3, Sony) and IMX335. Cartoon images from alarm clocks and blue bed 

show that chromatic aberrations and central bright speckle are greatly improved after 

recovery through our method. The attention mechanism leads to a wider receptive field, 

combined with a multi-scale structure, allowing for a more complete removal of global 

information-related bright speckle in a central position. Despite the images captured by the 

meta-camera have stronger bright speckle than those captured by the ultra-wide FOV 

metalens only, the proposed neural network can still eliminate them. To quantitatively 

evaluate the performance of the neural meta-camera, we test a black-and-white target 

image. The captured images of the black-and-white target shown in Fig. 5(d), the image 

from the neural meta-camera has no central bright speckle and color casts, and the line 

contours are clearer than those of only meta-camera. Figures 5(e) and 5(f) show the 

intensity distribution of the center and edge of the captured image, where the solid and 

dashed lines correspond to images captured only from the meta-camera and improved by 

neural network, respectively. The calculated contrast of the center and edge parts of the 

target images are increased by 13.5 times and 2.7 times, i.e., 0.834, 0.846 for the neural 

meta-camera, and 0.062, 0.313 for the meta-camera only, respectively. The high contrast 

values indicate high edge sharpness in neural meta-camera imaging. In conclusion, our 

neural meta-camera enables high-quality, wide FOV and full-color imaging.

To assess the practicability and feasibility of the neural meta-camera in actual scene, 

we captured and recovered the images in two scenarios. One is the imaging of three moniter 

screens at different working distances; the other is the imaging of multiple objects of 

various colors arranged at different depths in actual scene. In the first scenario, we obtained 

recovery images at the working distances of 1.3 cm, 12 cm, and 44.5 cm, as shown in 
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Figure S17. It can be seen that the image restoration clarity and color comparison are 

uniform at different working distances. The calculated peak signal-to-noise ratio (PSNR) 

and structive similarity index measure (SSIM) values (as shown in Table S4) further 

emphasize quantitatively the quality of image restoration at different distances. 

In the other scenario, we further capture and recover the image of letters and dolls at 

different working distances in indoor scene. We set up a dual optical path data acquisition 

system [Figure S18(a)] based on a cube beam splitter to obtain pixel-level aligned datasets. 

As shown in Figure S18(b), in the recovered image from the neural meta-camera, the letters 

are clearer, and the dolls at different working distances of 40 cm, 55cm and 85cm can also 

be identified. Although the recovered image lacks detail, its central bright speckle and 

chromatic aberration are greatly improved compared to the original image from the meta-

camera. In addition, based on the imaging data from actual scene, we compare the 

performance between imaging of meta-camera and traditional camera on the multi-

label image classification task. The data from meta-camera achieves a precision of 96.47%, 

while the data from traditional camera achieves 96.73%. Experiments demonstrated that 

imaging of meta-camera did not show significant performance differences in recognition 

tasks compared to imaging from traditional camera, which hints at the potential of meta-

camera for classification and recognition application.  

4 Discussion

Our work demonstrates a neural meta-camera for ultra-wide FOV and full-color 

imaging in single-shot without scanning or image stitching. The neural meta-camera 

consists of an ultra-wide FOV metalens, a CMOS image sensor and the image recovery 
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neural network. Thanks to the high-precision assembly technology, our neural meta-

camera is only 9.07 × 9.07 × 1.57 mm3 in volume, including the support structure and the 

CMOS image sensor. The neural meta-camera overcomes chromatic aberration, distortion, 

central bright speckle and background noise through image recovery neural network, and 

successfully achieves full-color imaging with high contrast over wide FOV. Such neural 

meta-camera is an exemplary case in imaging systems with minimization, functionality, 

wide FOV and high-quality performance at the same time. 

The proposed KD paradigm is theoretically uncoupled from the design approach, so 

it is extended to applications such as depth of field synthesis and outdoor imaging, etc.  

Under ideal conditions, the model can recover images at the speed of 48 frames per second 

on the RTX 3090 GPU, which opens up the possibility of real-time49 processing in the 

future. This novel neural meta-camera module paves the route for meta-optics for the 

thinner, lightweight, and more compact visible full-color imaging system, such as non-

invasive50 endoscopy, robot navigation, micro-intelligent systems and engineering 

surveying. 
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Figures and Figure Captions

Fig. 1 Neural meta-camera model. The meta-camera consists of the ultra-wide FOV 

metalens and the transformer-based neural network for full-color imaging. Green arrows 

show the process of image recovery. The captured image from the meta-camera is 

reconstructed by the image recovery neural network constructed by the KD paradigm 

(yellow arrows, prior knowlege and data-driven). The neural network is initialized by the 

prior dataset from the simulated PSFs of the metalens, and then measured dataset from 

meta-camera are input to drive the refinement of the initialized neural network. To capture 

information at muti-scales, we use U-shaped hierarchical neural networks. Considering the 

spatial distribution characteristics of the simulated PSFs from the metalens, the U-shaped 

network with an attention mechanism is adopted to cope with its non-uniformity. 
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Fig. 2 Ray optics design and characterization of the ultra-wide FOV metalens. (a) Ray 

tracing simulation results of ultra-wide FOV metalens (left) of 140°. The 

red/green/blue/yellow rays have four crossing points at the same image plane passing 

through aperture, substrate, metasurface and cover glass of sensor. Spot diagrams (right) 

shows the diffuse spots with the incident angles of 0°, 20°, 40°, 70° are inside the Airy 

circle (black solid). (b) Simulated MTF curves at different FOVs and black solid-line 

indicates the diffraction limit. Schematic of a meta-atom of the metasurface, consisting of 

a silicon nanopost with the height (H1) of 265 nm and silicon dioxide protective layer with 

thinckness (H2) of 1 µm on a silica substrate. The nanoposts with varying diameter (D) are 

arranged in a square lattice with the lattice constant (S) of 220 nm. (c) Top-view SEM 

images of the metalens with different scales. (d) Simulated and measured focal length and 
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image height of spots at different FOVs. (e) Projected images of the USAF 1951 resolution 

test chart at wavelengths of 532 nm. The corresponding intensity distributions of vertical 

lines (yellow) and horizontal lines (orange) of the element 3 from the group 8 displayed a 

line width of 1.55 μm. (f) Image of the number “7” in different incident angles at the 

wavelength of 532 nm. 
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Fig. 3 Proposed KD paradigm for training image recovery neural network. (a) Prior 

knowledge, i.e. PSFs, obtained from the design parameters of the metalens are applied to 

the original images to generate the prior dataset. This prior dataset is used to train an 

initialized neural network. (b) By utilizing the data collection and processing flow we have 

established, data from corresponding scenarios is collected to drive further fine-tuning of 

the model, enabling it to cope more intricate image degradation in actual scenarios. 

Measured dataset in data-driven are images (e.g. LCD screen projection images) captured 

by metalens and conventional commercial lens (Sigma Art Zoom lens) respectively. As 

shown by the black dotted line, the neural network is updated through back-propagation 

with same loss function in both stage (a) and stage (b). After the model parameters updates 

of two stages, the neural network is employed to recover imaging in the corresponding 

scenario.
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Fig. 4 Image recovery results of our neural network for images of naked ultra-wide FOV 

metalens are compared with results from Unet & KD paradigm and other traditional 

method. (a) Schematic illustrations of data acquisition system for naked ultra-wide FOV 

metalens. The object projected by a 5.5-inch LCD screen is collected by the naked ultra-

wide FOV metalens with a working distance of 2 cm and redirected to a 

micromagnification system with an objective lens (Olympus, MPLFLN10xBD), adapter 
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tube lens (1-62922, NAVITAR) and a CMOS sensor (Sony, A7M3). (b) Compared to Unet 

& KD paradiagm and other traditional image recovery algorithms (e.g., MSRCR, 

Laplacian), our image recovery neural network produces ultra-wide FOV, full-color and 

high-quality images corrected for central bright speckle, chromatic aberrations and 

distortion. Examples of recovered images include complex scenes such as cartoons with 

orange alphabets, yellow buses in the shade, concerts under blue lights. Detail insets are 

illustrated below each row. Compared to ground truth capture (the right most column) 

using conventional commercial lens (Sigma Art 24-70mm DG DN), our neural network 

accurately reproduces fine details and colors in images. More comparison images (e.g., 

grids, letters, oranges) are shown in Fig. S12-14.
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Fig. 5 Neural meta-camera for imaging. (a) Photograph of the meta-camera system (left) 

by integrating the miniature meta-camera (top-right) with a CMOS image sensor, and the 

schematic illustrations of its structural mechanism (bottom-right) includes an aperture, 

sleeve and base for shading and waterproofing. (b) Schematic diagram of meta-camera test. 

The ground truth images are projected on the LCD screen and captured directly by meta-

camera. (c) Comparison recovery results from images captured by  ultra-wide FOV 

metalens only and meta-camera at the working distance of 2cm. Cartoon images from 

alarm clocks and blue bed show that chromatic aberrations and central bright speckle are 

greatly improved after recovery by neural networks. More comparison images (e.g., doll, 

coral, concert) are shown in Fig. S15-16. (d) Images captured through the meta-camera 
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only or with the neural meta-camera. (e-f) The corresponding intensity profiles along line 

AB, A'B', CD and C'D' in the central and edge areas of the images, respectively. The image 

contrast for the neural meta-camera exhibits substantial enhancement compared to that for 

the meta-camera without neural networks.
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