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Abstract. Quantum state tomography (QST) is a crucial ingredient for almost all aspects of experimental quantum
information processing. As an analog of the “imaging” technique in quantum settings, QST is born to be a data
science problem, where machine learning techniques, noticeably neural networks, have been applied extensively.
Here, we build and demonstrate an optical neural network (ONN) for photonic polarization qubit QST. The ONN is
equipped with built-in optical nonlinear activation functions based on electromagnetically induced transparency. The
experimental results show that our ONN can determine the phase parameter of the qubit state accurately. As optics
are highly desired for quantum interconnections, our ONN-QST may contribute to the realization of optical quantum
networks and inspire the ideas combining artificial optical intelligence with quantum information studies.
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1 Introduction

Quantum state tomography (QST) is a standard process of reconstructing quantum information

of an unknown quantum state through measurements on its copies. QST is used to verify state

preparation, exam state properties such as correlations, and calibrate experimental systems. It is

a crucial part of almost all aspects of experimental quantum information processing, including

quantum computing, quantum metrology, and quantum communication.1–6

As an analog of the “imaging” technique in quantum settings, QST is born to be a data science

problem. Given limited copies of an unknown state ρ, we can extract its information via QST.

QST is essentially an inverse problem, and such information recovering tasks are well suited to

machine learning. Quantum learning theory indicates that Θ (22n/ε2) copies of ρ are necessary

and sufficient to learn ρ up to trace distance ε.7 Although the tremendous resource requirement
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makes full-state QST impractical for large-scale systems, several weaker quantum learning mod-

els (e.g., probably approximately correct learning,8 online learning,9 shadow tomography10, 11) can

exponentially reduce the computational resource for learning some 2-outcome measurement ex-

pectation values or “shadows”.

Artificial neural network (NN), a powerful algorithm in machine learning to fit a specific func-

tion, has been widely used for solving quantum information problems, such as quantum optimal

control,12, 13 quantum maximum entropy estimation,14 Hamiltonian reconstruction,15 etc. NNs have

also been widely applied for QST applications, such as efficiently recovering the information of

local-Hamiltonian ground states from local measurements,16 performing tomography on highly en-

tangled state with large system size,17 mitigating the state-preparation-and-measurement (SPAM)

errors in experiments,18 and improving the state fidelity.19, 20 Generative models with neural net-

works can also perform QST with dramatically lower cost.21, 22

In this work, we demonstrate QST with an optical neural network (ONN). Several optical

implementations for realizing fully-connected neural network hardware have been proposed and

demonstrated recently.23–28 Optical computing takes advantages of the bosonic wave nature of

light: superposition and interference give rise to its intrinsic parallel computing ability. Mean-

while, light is the fastest information carrier in nature. ONN is promising for next-generation

artificial intelligence hardware, which provides high energy efficiency, low cross-talk, light-speed

processing, and massive parallelism. As compared to the electronic version, ONNs are ideal for

dealing with visual signals and information which are naturally generated and coded in light, such

as image recognition and vehicular automation. However, most ONN demonstrations are still re-

stricted to linear computation only due to the lack of suitable nonlinearity at low light level for

large amount of optical neurons25–27 . Without nonlinear activation functions, and ONN is always

2



Supervised

Learning …

…

Neural network

𝑀𝑀 |𝜓𝜓⟩

…

… …

…

…

…

…

Quantum State Reconstruction

𝜓𝜓𝑗𝑗

𝑀𝑀𝑗𝑗

Local Measurements

Quantum States Preparation

𝜓𝜓

𝑀𝑀

Measurements Sets

Input

Tr
ai

ni
ng

 D
at

a
Output

AONN

Fig 1 Schematics of optical neural network based quantum state tomography.

equivalent to a single-layer structure that cannot be applied for “real” deep machine learning. This

problem has not been solved until most recently optical nonlinearity based on electromagnetically

induced transparency (EIT),28, 29 phase-change materials,30 and saturated absorption31, 32 was im-

plemented to realize artificial optical neurons for ONNs.

Figure 1 illustrates a general scheme of ONN-QST. Firstly we collect the training data set from

a known quantum state {|ψj〉} and the corresponding local measurements {Mj}. Secondly, we

train neural networks under supervised learning with some nonlinear activation functions in their

hidden neurons to obtain the optimal network parameters. Thirdly, we take the trained network

parameters to configure the ONN and perform some fine adjustments to optimize the hardware

performance. At last, we feed measurement data sets to the trained ONN to reconstruct unknown

quantum states. To validate this scheme, in the following sections, we start from a general discus-

sion of QST with the computer-simulated NN and then describe our ONN experimental approach.

3



2 NN for QST

We consider a general n-qubit space with Pauli operators (removed the all identity term) defined

as

P = {σ(1)
i1
⊗ · · · ⊗ σ(n)

in
|σ(k)
ik
∈ P ,

n∑
k=1

ik 6= 0}, (1)

where P = {σ0 = I, σ1 = X, σ2 = Y, σ3 = Z}. Every term in P is specified by its index

(i1, i2, · · · , in). Measuring every element in P performs a QST for any n-qubit quantum state

ρ. For instance, when n = 1, we need to measure all three Paulis X, Y, Z for QST. Clearly, the

cardinality of P grows exponentially with n. When ρ is a pure state, one may use techniques to

reduce the number of measurements for n > 1. Compressed sensing is an efficient technique for

recovering low-rank quantum states from randomly sampled Pauli operators.33, 34

When ρ is a pure state, it can be written as a ket

|ψ〉 =
2n∑
k=1

ak |φk〉 , (2)

where {|φk〉} are the computational basis, and the amplitudes ak ∈ C are normalized (i.e.
∑2n

k=1(a
2
k,r+

a2k,im) = 1, where ak,r ∈ R and ak,im ∈ R are the real and imaginary parts of ak respectively).

The measurement expectation values P are ~c = tr(ρ · P ) = (tr(ρP1), tr(ρP2), · · · , tr(ρP4n−1)).

For a single qubit pure state α|0〉+ β|1〉, its density matrix can be expressed as

ρ =
1

2
(1 + ~c · ~σ) (3)

where ~σ = {X, Y, Z}, and ~c = (tr(ρX), tr(ρY ), tr(ρZ)) ≡ (〈X〉, 〈Y 〉, 〈Z〉).

In compressed sensing, one needs to randomly sample a set Pm = {P1, · · · , Pm} of m Pauli
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Fig 2 The fidelities of NN predictions for different samples of Pauli operators: The red triangles are the average
fidelities for UDA Pauli operator sets, which is very close to 1. A Pauli operator set is said to be ”UDA” if measuring
these operators can uniquely determine a pure state among all states. The green bars are the average fidelities for
random sampled Pauli operator sets. The blue lines are the error bars for different samples. We train NN to predict
state wavefunctions from measurements for (a) 1 qubit, (b) 2 qubits and (c) 3 qubits.

operators from P , then use ~c = tr(ρ · Pm) = (tr(ρP1), tr(ρP2), · · · , tr(ρPm)) to recover the un-

known state ρ, more precisely, the parameters of ρ. This can be regarded as a regression problem

to estimate the function between ~c and parameters of ρ (e.g. ak,r and ak,im).

NNs are excellent tools for solving regression problems. When using NNs for QST, the ex-
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pectation values ~c from random-sampled Pm are inputs to the network, and state parameters (ak,r,

ak,im) are the outputs. Compared to compressed sensing, the NN for QST can be significantly faster

when processing many data points. Once the NN is well-trained, it can produce reliable unseen

results within an instance, while one needs to solve a convex optimization problem for each data

point when applying compressed sensing. Note that both NN-QST and compressed sensing use

much fewer measurement settings than the standard method. Without loss of generality, we use

the simplest type of NNs in this letter – fully-connected, feed-forward NNs. The neurons between

the nearest layers are fully connected, and the information only passes forward while training. The

supervised training process is to compare the ideal outputs (ak,r, ak,im) with current NN outputs

and update parameters embedded in the NN to minimize their difference.

We numerically trained computer-based NNs nonlinear activation functions for 1-qubit, 2-qubit

and 3-qubit QST. For the 1-qubit system, the number of sampled operators m ∈ [1, 2, 3]; for

the 2-qubit system, the number of sampled operators m ∈ [6, 8, 10, 12]; for the 3-qubit system,

m ∈ [20, 25, 30, 35, 40]. Plainly, m equals the number of input neurons, and n decides the number

of output neurons. For each m, three sets of Pauli operators have been sampled and tested. Figure

2 plots the average fidelities (green bars) of both cases as functions of the number of randomly

sampled Paulis. For the single qubit system, the fidelity reaches 99.99% with 3 paulis [Fig. 2(a)].

For the 2-qubit system, the fidelity reaches 99.9% with 10 randomly sampled paulis [Fig. 2(b)].

For the 3-qubit system, a fidelity of higher than 99.9% requires more than 35 randomly sampled

Paulis [Fig. 2(c)]. Details of training can be found in Supplemental Material S1.

Theoretically, a pure state ρ is Uniquely Determined among all states (UDA) of a set of oper-

ators F means that there is no other state, pure or mixed, has the same expectation values while

measuring F .35 In Ref.,36 authors discovered two sets of Pauli operators, P2-UDA and P3-UDA, that
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are UDA for all 2-qubit and 3-qubit pure states respectively. (See Supplemental Material S2 for

the particular sets P2-UDA and P3-UDA.) Namely, they are special cases of Pauli operator sets that the

map between expectation values and the measured state ρ is bijective. Similarly, we apply NNs for

these two sets of UDA operators and obtain the prediction fidelities of 99.9% for the 2-qubit case

and 99.3% for the 3-qubit case (red triangles in Figure 2).

We remark that our UDA scheme is not readily scalable for larger systems. However, there

exist protocols with better scalability, e.g., compressed sensing,33 shadow tomography,10, 11 where

NNs can also be naturally used. In addition, our NN-based scheme can be adapted to quantum

tomography in the optical system by taking physical constraints into account, which we will discuss

in the next section.

3 ONN-QST experiment

In this first proof-of-principle experimental demonstration, we implement the single-qubit space

with light polarizations, i.e., horizontal polarization |H〉 = |0〉 and vertical polarization |V 〉 = |1〉.

Instead of making a full QST, here we focus our task to determine the phase parameter of a pure

state |ψ〉 = 1√
2
(|H〉 + eiθ|V 〉). The experimental ONN-QST setup is displayed in Fig. 3. In con-

ventional QST, an arbitrary polarization state can be reconstructed by measuring the expectation

values of the three Pauli operators. Figure 3(a) illustrates such an optical measurement setup. A

laser beam passes through a polarization beam splitter (PBS1) and becomes horizontally polarized

(|H〉). The target state |ψ〉 = 1√
2
(|H〉 + eiθ|V 〉) is prepared by letting this horizontally polarized

light pass through a half-wave plate (HWP1) and a quarter-wave plate (QWP1). The expectation

values 〈X〉, 〈Y 〉 and 〈Z〉 are obtained by sending the light polarization qubit state to the measure-

ment units II, III, and IV shown in Fig. 3(a). To determine 〈Z〉, we send the polarization qubit
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Fig 3 Schematics of optical implementation of quantum state tomography. (a) Optical layout of qubit quantum state
tomography, including generation of polarization state (top panel), measurement of 〈Z〉, 〈X〉 and 〈Y 〉 (bottom panel).
The fast axis of the HWP1 is aligned with an angle π/4− θ/2 to the horizontal direction. The fast axis of the QWP1 is
aligned with an angle π/4 to the horizontal direction. (b) Schematics of optical neural network. I. Input generation.
II. Linear operation of the first layer. III. Nonlinear operation. IV. Linear operation of the second layer. Spatial light
modulators: SLM1 (HOLOEY LETO), SLM2(HOLOEYE PLUTO-2), and SLM3(HOLOEY GEAE-2). Camera:
Hamamatsu C11440-22CU. PBS: polarization beam splitter. Lenses: L1-L9 Atoms are trapped in magneto-optical
trap. (c) The neural network structure employed.

directly to PBS2 which projects |H〉 and |V 〉 into two photodetectors in the measurement unit III.

The normalized differential output from these two photodetectors gives the value 〈Z〉. The same

setup can also be used to determine 〈X〉 or 〈Y 〉 by placing HWP2 or QWP2 before PBS2 as shown

in II or IV, respectively (see Supplemental Material S3 for details).

We obtain a data set {Mi}={|φi〉 : 1−〈X〉i, 1−〈Y 〉i, 1−〈Z〉i} by varying the phase θ ∈ [0, π/2]

in the qubit state |ψ〉 = 1√
2
(|H〉 + eiθ|V 〉) and use them to train our ONN in Fig. 3(b). The ONN

comprises an input layer of 3 neurons, a hidden layer of 20 neurons and a single-neuron output

layer.28, 29 Figure 3(b) shows the optical layout of the ONN and its network structure diagram is

displayed in Fig. 3(c). The three coupling laser beams in the optical input layer are generated by

a spatial light modulator (SLM1) [Fig. 3(b)], lenses L2 and L3, and an aperture, as shown in unit
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I of Fig.3(b). The SLM1 is divided into 3 parts and each part is encoded with sine phase pattern

mπ sin( 2π
Tmj

j+ 2π
Tmk

k), wherem is the modulation depth, Tmj and Tmk are the period of modulation

along x and y directions and j and k are the pixel number along x and y directions. The sine phase-

encoded on SLM1 modulates the beams into separated beams at the focal plane of lens L2. The

aperture behaves as a filter to keep the zero-order beam, whose intensity is determined by the

modulation depth m. Thus, the intensity of the three beams is changed according to the input. The

focal beams pass through lens L3 and collimated incident to the SLM2. These weighted beams, as

the input vector, are incident on SLM2, which diffracts each beam into 20 directions with designed

weight (See Supplemental Material S4 for the algorithm calculate the pattern encoded on SLM2).

A Fourier lens L4 performs linear summation for the beams diffracted into the same direction and

forms 20 spots on its front focal plane. Thus, the combination of SLM2 and L4 completes the

first linear operation W1 and generates the input to the hidden layer. We then image these 20 spots

with lenses L5 and L6 to laser-cooled 85Rb atoms in a two-dimensional (2D) magneto-optical trap

(MOT),37, 38 where these 20-spot coupling beam patterns spatially modulate the transparency of the

atomic medium through electromagnetically induced transparency (EIT).39, 40 Another relatively

weak collimated probe beam counter-propagates through the MOT, and its spatial transmission is

nonlinearly controlled by the 20-spot coupling beam pattern. Here the nonlinear optical activation

functions are realized with EIT in cold atoms. The equation of nonlinear activation functions

follows Equation 4.

Ioutp = f(Ic) = I inp e
−OD 4γ12γ13

Ω2
c+4γ12γ13

,
(4)

where I inp is the power of the input probe beam. Ωc is the Rabi frequency of the coupling beam, and

Ω2
c is proportional to coupling beam intensity Ic. Here, γ13 = 2π× 3 MHz is fixed and determined
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by the spontaneous emission of the excited state |3〉. The ground-state dephasing rate γ12 can be

engineered by applying an external magnetic field. OD is the atomic optical depth on the probe

transition.

The image of the probe beam transmission pattern by lens L6 and L8 becomes the output of

the 20 hidden neurons. SLM3 and Fourier lens L9 perform the second linear matrix operation W2,

and a camera records the output. The technical details of our ONN are described in ref.28, 29

In this work because we encode trained NN model and input data into the power of beams,

the ONN can only handle positive values: Input, output, linear matrix elements, and input/output

of nonlinear activation functions are all positive values.28, 29 Meanwhile, the EIT optical nonlinear

activation functions are increasing and convex. The lack of negative values in the neural network

limit its ability. Therefore the ONN is only able to perform regression task on increasing and

convex functions. To match the ONN constrains, we perform a transform to the input variable,

e.g., 〈X〉 to 1-〈X〉, so that all input values to the ONN nodes are positive. We add these conditions

to NN to simulate the ONN performance. The optimizer we use is Adam41. We find that this

specific ONN fails to describe the whole range of nonmonotonic functions. For the first proof-

of-principle experimental demonstration, we will only apply the ONN for single-qubit QST with

phase θ within [0, π/2]. It is surprising that such a positive-valued ONN is still able to perform

some types of QST.

To train the ONN, we prepared the training data set {Mi} from 23 phase values from a uniform

distribution θj ∼ U(0, π/2), corresponding to the optical polarization states {ρj = N (|φj〉〈φj|)}.

Here N is the noise channel in experiments, and measure the Pauli expectation values 〈X〉, 〈Y 〉,

〈Z〉. In a similar way, we prepare a test set with 32 independent data samples.

In addition to optical quantum states, we sample data from the IBM quantum computer ibmq ourense,42
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Experimental result of NN and ONN prediction

(a）

(b2)

(b1)
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𝜌𝜌 = 0.5 0.1852 − 0.46457𝑖𝑖

0.1852 + 0.46457𝑖𝑖 0.5

Fig 4 (a) Optical tomography of qubit (b) Experimental ONN tomography result. The ONN is training by optical
tomography data (b1) and IBMQ tomography data (b2). The black dashed line is the theoretical value of the phase θ
according to the 〈X〉. The blue circles are the phase θ numerically predicted by the trained neural network, and the
red triangles are the experimentally measured predictions of θ according to 〈X〉.The yellow triangle is an example of
ONN experimental predicted state.

and implement the same ONN training for comparison. The quantum circuit to prepare |ψ〉 =

(|H〉+ eiθ|V 〉)/
√

2 is the initial state |H〉 going through a Hadamard gate and then going through

a RZ rotation gate. On ibmq ourense, we uniformly sample 158 data points as the training set;

50 data points as the test set. Experimental optical quantum state and IBMQ tomography data are

used to train two NNs. Details of training ONN can be found in Supplemental Material S5.

Figure 4 shows the ONN state construction results using neural network models trained by the

ONN QST training set and the IBM quantum computer training set separately. The theoretical

value is calculated from 〈X〉 directly. With the ONN system set up to the training results, we sent

a set of input vector to the system. The example of real and imaginary part of density matrix are

shown in Fig. 4(a). The experimentally measured state example is predicted by ONN QST training

model. The example input vector for ONN model is (〈X〉, 〈Y 〉, 〈Z〉) = (0.440, 0.898, 0) and the
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ONN experimental predicted state is θ = 1.195 and ρ =

 0.5 0.1852− 0.46457i

0.1852 + 0.46457i 0.5


which is close to the theoretical value θ = 1.1152 and neural network predicted value θ = 1.1532.

The state is also marked with yellow triangle in Fig. 4 (b1). The experimental results are shown in

Fig. 4(b). The theoretical value, NN predicted value and experimental ONN predicted value agree

with both optics data training (Fig. 4 (b1) shows) and IBMQ data training (Fig. 4 (b2) shows). The

theoretical value, neural network prediction value and ONN predicted value are consistent in both

cases. The results suggest that our positive-valued ONN with EIT nonlinear activation functions is

capable for qubit QST.

4 Discussion and conclusion

While most demonstrations of optical neural networks took classification tasks to verify their fea-

sibility,26, 27, 30 we performed the first regression task, i.e., ONN-QST. To accomplish regression

tasks, nonlinear function is essential as long as the relation between input vector and output vector

cannot be expressed linearly. The tunable EIT nonlinear optical activation functions in our ONN

offer opportunities for performing regression tasks with convex and increasing/decreasing func-

tions. Although our ONN has some certain limitation that the linear operation matrix elements are

all positive valued, it has the potential to do large-size QST with restrictions.

Further, ONN can play a positive role in the noisy intermediate-scale quantum (NISQ) era. In

NISQ algorithms, one usually only needs to reconstruct some reduced density matrix and extract

the required local information instead of characterizing the whole system through a full-state to-

mography. ONN-QST can serve as an efficient subroutine to speed up this process. For example,

within each Trotter step of the quantum imaginary time evolution,43, 44 we can train an ONN to

12



reconstruct the reduced density matrix of some neighboring qubits, then use this information to

determine the direction of the next step.

To perform QST for a higher dimensional space requires more active neurons. Our theoretical

simulation shows 10 and 30 inputs are needed for the 2- and 3-qubit cases, respectively. However,

while the number of optical neurons is not a limiting factor in our current experimental setup, the

ONN input/output and matrix weights are all positive-valued. Meanwhile, the nonlinear activation

functions we implemented are increasing and convex, and its impossible to conduct the regression

task of non-monotonic functions experimentally. These physical limitations limit us to perform-

ing more complicated QST. We believe the next generation of complex-valued ONNs with data

encoded in both light amplitude and phase will be more powerful. The future development of

complex-valued ONNs may enable large-size QST and more applications.

Optical quantum network45 has been brought to the fore by the reduced decoherence and high

speed of photons. Recently, apart from generating optical quantum states46 and optical quantum

communication over long distance,47 multiple state-of-the-art experiments on optical quantum in-

terfaces to store48 and distribute entanglements49, 50 have been exhibited. Among all of these, QST

is essential for characterizing the generation and preservation of quantum states and has the poten-

tial to verify the entanglement distributed across the whole network. We believe that our optical

setup of integrated ONN-QST will shed light on replenishing the optical quantum network with

one more brick.
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1 F. Bouchard, F. Hufnagel, D. Koutnỳ, et al., “Quantum process tomography of a high-

dimensional quantum communication channel,” Quantum 3, 138 (2019).

2 G. M. D’Ariano, M. G. Paris, and M. F. Sacchi, “Quantum tomography,” Advances in Imaging

and Electron Physics 128, 206–309 (2003).

3 U. Leonhardt, “Quantum-state tomography and discrete wigner function,” Phys. Rev. Lett.

74(21), 4101 (1995).

4 R. Thew, K. Nemoto, A. G. White, et al., “Qudit quantum-state tomography,” Phys. Rev. A

66(1), 012303 (2002).

5 A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography,”

Rev. Mod. Phys. 81(1), 299 (2009).

6 M. Rambach, M. Qaryan, M. Kewming, et al., “Robust and efficient high-dimensional quan-

tum state tomography,” Phys. Rev. Lett. 126, 100402 (2021).

7 R. O’Donnell and J. Wright, “Efficient quantum tomography,” in Proceedings of the forty-

eighth annual ACM symposium on Theory of Computing, 899–912 (2016).

14



8 S. Aaronson, “The learnability of quantum states,” Proc. R. Soc. A. 463(2088), 3089–3114

(2007).

9 S. Aaronson, X. Chen, E. Hazan, et al., “Online learning of quantum states,” J. Stat. Mech.

2019(12), 124019 (2019).

10 S. Aaronson, “Shadow tomography of quantum states,” SIAM Journal on Computing 49(5),

STOC18–368 (2019).

11 H.-Y. Huang, R. Kueng, and J. Preskill, “Predicting many properties of a quantum system

from very few measurements,” Nature Physics 16(10), 1050–1057 (2020).

12 M. Y. Niu, S. Boixo, V. N. Smelyanskiy, et al., “Universal quantum control through deep

reinforcement learning,” npj Quantum Inf. 5(1), 1–8 (2019).

13 Z. An, H.-J. Song, Q.-K. He, et al., “Quantum optimal control of multilevel dissipative quan-

tum systems with reinforcement learning,” Phys. Rev. A 103, 012404 (2021).

14 N. Cao, J. Xie, A. Zhang, et al., “Neural networks for quantum inverse problems,”

arXiv:2005.01540 (2021).

15 C. Cao, S.-Y. Hou, N. Cao, et al., “Supervised learning in hamiltonian reconstruction from

local measurements on eigenstates,” J. Phys.: Condens. Matter 33(6), 064002 (2020).

16 T. Xin, S. Lu, N. Cao, et al., “Local-measurement-based quantum state tomography via neural

networks,” npj Quantum Inf. 5(1), 1–8 (2019).

17 G. Torlai, G. Mazzola, J. Carrasquilla, et al., “Neural-network quantum state tomography,”

Nat. Phys. 14(5), 447 (2018).

18 A. M. Palmieri, E. Kovlakov, F. Bianchi, et al., “Experimental neural network enhanced

quantum tomography,” npj Quantum Inf. 6(1), 1–5 (2020).

15



19 Y. Quek, S. Fort, and H. K. Ng, “Adaptive quantum state tomography with neural networks,”

npj Quantum Inf. 7, 105 (2021).
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22 S. Ahmed, C. Sánchez Muñoz, F. Nori, et al., “Quantum state tomography with conditional

generative adversarial networks,” Phys. Rev. Lett. 127, 140502 (2021).

23 G. Wetzstein, A. Ozcan, S. Gigan, et al., “Inference in artificial intelligence with deep optics

and photonics,” Nature 588(7836), 39–47 (2020).

24 B. J. Shastri, A. N. Tait, T. F. de Lima, et al., “Photonics for artificial intelligence and neuro-

morphic computing,” Nat. Photonics 15(2), 102–114 (2021).

25 D. Woods and T. J. Naughton, “Photonic neural networks,” Nat. Phys. 8(4), 257–259 (2012).

26 Y. Shen, N. C. Harris, S. Skirlo, et al., “Deep learning with coherent nanophotonic circuits,”

Nat. Photonics 11(7), 441 (2017).

27 X. Lin, Y. Rivenson, N. T. Yardimci, et al., “All-optical machine learning using diffractive

deep neural networks,” Science 361(6406), 1004–1008 (2018).

28 Y. Zuo, B. Li, Y. Zhao, et al., “All-optical neural network with nonlinear activation functions,”

Optica 6(9), 1132–1137 (2019).

29 Y. Zuo, Y. Zhao, Y.-C. Chen, et al., “Scalability of all-optical neural networks based on spatial

light modulators,” Phys. Rev. Applied 15, 054034 (2021).

16



30 J. Feldmann, N. Youngblood, C. D. Wright, et al., “All-optical spiking neurosynaptic net-

works with self-learning capabilities,” Nature 569(7755), 208–214 (2019).

31 X. Guo, T. D. Barrett, Z. M. Wang, et al., “Backpropagation through nonlinear units for the

all-optical training of neural networks,” Photon. Res. 9, B71–B80 (2021).

32 A. Ryou, J. Whitehead, M. Zhelyeznyakov, et al., “Free-space optical neural network based

on thermal atomic nonlinearity,” Photonics Res. 9(4), B128–B134 (2021).

33 D. Gross, Y.-K. Liu, S. T. Flammia, et al., “Quantum state tomography via compressed sens-

ing,” Phys. Rev. Lett. 105(15), 150401 (2010).

34 S. T. Flammia, D. Gross, Y.-K. Liu, et al., “Quantum tomography via compressed sensing: er-

ror bounds, sample complexity and efficient estimators,” New J. Phys. 14(9), 095022 (2012).

35 J. Chen, H. Dawkins, Z. Ji, et al., “Uniqueness of quantum states compatible with given

measurement results,” Phys. Rev. A 88(1), 012109 (2013).

36 X. Ma, T. Jackson, H. Zhou, et al., “Pure-state tomography with the expectation value of

pauli operators,” Phys. Rev. A 93, 032140 (2016).

37 H. J. Metcalf and P. van der Straten, “Laser cooling and trapping of atoms,” J. Opt. Soc. Am.

B 20(5), 887–908 (2003).

38 S. Zhang, J. F. Chen, C. Liu, et al., “A dark-line two-dimensional magneto-optical trap of

85rb atoms with high optical depth,” Rev. Sci. Instrum. 83(7), 073102 (2012).

39 S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7)(7), 36–42

(1997).

40 M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced trans-

parency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633 (2005).

17



41 D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv:1412.6980

(2017).

42 5-qubit backend: IBM Q team, “IBM Q 5 Ourense backend specification V1.3.5,”. Retrieved

from https://quantum-computing.ibm.com (2020).

43 M. Motta, C. Sun, A. T. Tan, et al., “Determining eigenstates and thermal states on a quantum

computer using quantum imaginary time evolution,” Nature Physics 16(2), 205–210 (2020).

44 C. Cao, Z. An, S.-Y. Hou, et al., “Quantum imaginary time evolution steered by reinforcement

learning,” arXiv: 2105.08696 (2021).

45 H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).

46 Z. Gu, C. Yang, and J. F. Chen, “Characterization of the photon-number state of a narrow-

band single photon generated from a cold atomic cloud,” Opt. Commun. 439, 206–209 (2019).

47 Y. Yu, F. Ma, X. Y. Luo, et al., “Entanglement of two quantum memories via fibres over

dozens of kilometres,” Nature 578(7794), 240–245 (2020).

48 C. Li, N. Jiang, Y. K. Wu, et al., “Quantum Communication between Multiplexed Atomic

Quantum Memories,” Phys. Rev. Lett. 124(24), 1–6 (2020).

49 K. S. Choi, A. Goban, S. B. Papp, et al., “Entanglement of spin waves among four quantum

memories,” Nature 468(7322), 412–418 (2010).

50 Y. Pu, Y. Wu, N. Jiang, et al., “Experimental entanglement of 25 individually accessible

atomic quantum interfaces,” Sci. Adv. 4(4), eaar3931 (2018).

51 B. Xu, N. Wang, T. Chen, et al., “Empirical evaluation of rectified activations in convolutional

network,” arXiv:1505.00853 (2015).

18



52 R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for

optical trap arrays,” Opt. Express 15(4), 1913–1922 (2007).

53 F. Nogrette, H. Labuhn, S. Ravets, et al., “Single-atom trapping in holographic 2d arrays of

microtraps with arbitrary geometries,” Phys. Rev. X 4(2), 021034 (2014).

Ying Zuo received her B.Sc. from University of Science and Technology of China, Hefei, Anhui,

China, in 2017. Upon completion of this work, she is a Ph.D. candidate at The Hong Kong Uni-

versity of Science and Technology, supervised by Prof. Shengwang Du and Prof. Bei Zeng. Her

research interests focus on optical computing and quantum optics.

Chenfeng Cao received his B.Sc. from University of Chinese Academy of Sciences, Beijing,

China, in 2019. He is currently a Ph.D. candidate supervised by Professor Bei Zeng at the Hong

Kong University of Science and Technology. His research interests lie in quantum information and

quantum computing.

Ningping Cao received her Ph.D. from the University of Guelph, Ontario, Canada, in 2021. She is

currently a postdoc fellow at the Institute of Quantum Computing (IQC), University of Waterloo,

Ontario, Canada. She is interested in a wide range of topics in quantum information and quantum

computation.

Xuanying Lai received her BS degree from East China Normal University in 2020. Currently, she

is pursuing her PhD as a student under the supervision of Prof. Shengwang Du at the Department

of Physics, The University of Texas at Dallas. Her research focus is quantum optics.

19



Bei Zeng is a professor of Hong Kong University of Science and Technology. Her research focus

is on the design of quantum error-correcting codes with nice properties that are suitable for high

rate quantum information transmission through practical physical channels, and reliable quantum

computation with high noise tolerance and low resource requirement. She is a fellow of APS.

Shengwang Du , currently a Professor of Physics at The University of Texas at Dallas since 2021,

had worked at The Hong Kong University of Science and Technology from 2008 to 2020. His

group is exploring fundamentals in the field of atomic, molecular, and optical (AMO) physics

and their applications. His current research activities include quantum networks, all-optical neural

networks, and applied optical microscopy. He is a Fellow of both APS and Optica (formerly OSA).

List of Figures

1 Schematics of optical neural network based quantum state tomography.

2 The fidelities of NN predictions for different samples of Pauli operators: The

red triangles are the average fidelities for UDA Pauli operator sets, which is very

close to 1. A Pauli operator set is said to be ”UDA” if measuring these opera-

tors can uniquely determine a pure state among all states. The green bars are the

average fidelities for random sampled Pauli operator sets. The blue lines are the

error bars for different samples. We train NN to predict state wavefunctions from

measurements for (a) 1 qubit, (b) 2 qubits and (c) 3 qubits.
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3 Schematics of optical implementation of quantum state tomography. (a) Optical

layout of qubit quantum state tomography, including generation of polarization

state (top panel), measurement of 〈Z〉, 〈X〉 and 〈Y 〉 (bottom panel). The fast axis

of the HWP1 is aligned with an angle π/4 − θ/2 to the horizontal direction. The

fast axis of the QWP1 is aligned with an angle π/4 to the horizontal direction. (b)

Schematics of optical neural network. I. Input generation. II. Linear operation of

the first layer. III. Nonlinear operation. IV. Linear operation of the second layer.

Spatial light modulators: SLM1 (HOLOEY LETO), SLM2(HOLOEYE PLUTO-

2), and SLM3(HOLOEY GEAE-2). Camera: Hamamatsu C11440-22CU. PBS:

polarization beam splitter. Lenses: L1-L9 Atoms are trapped in magneto-optical

trap. (c) The neural network structure employed.

4 (a) Optical tomography of qubit (b) Experimental ONN tomography result. The

ONN is training by optical tomography data (b1) and IBMQ tomography data

(b2). The black dashed line is the theoretical value of the phase θ according to

the 〈X〉. The blue circles are the phase θ numerically predicted by the trained

neural network, and the red triangles are the experimentally measured predictions

of θ according to 〈X〉.The yellow triangle is an example of ONN experimental

predicted state.
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