• Chinese Optics Letters
  • Vol. 18, Issue 1, 010901 (2020)
Shohei Ikawa1, Naoki Takada2、*, Hiromitsu Araki3, Hiroaki Niwase3, Hiromi Sannomiya3, Hirotaka Nakayama4, Minoru Oikawa2, Yuichiro Mori2, Takashi Kakue5, Tomoyoshi Shimobaba5, and Tomoyoshi Ito5
Author Affiliations
  • 1Faculty of Science, Kochi University, Kochi 780-8520, Japan
  • 2Research and Education Faculty, Kochi University, Kochi 780-8520, Japan
  • 3Graduate School of Integrated Arts and Sciences, Kochi University, Kochi 780-8520, Japan
  • 4Center for Computational Astrophysics, National Astronomical Observatory of Japan, Mitaka-shi 181-8588, Japan
  • 5Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
  • show less

    Abstract

    We demonstrate real-time three-dimensional (3D) color video using a color electroholographic system with a cluster of multiple-graphics processing units (multi-GPU) and three spatial light modulators (SLMs) corresponding respectively to red, green, and blue (RGB)-colored reconstructing lights. The multi-GPU cluster has a computer-generated hologram (CGH) display node containing a GPU, for displaying calculated CGHs on SLMs, and four CGH calculation nodes using 12 GPUs. The GPUs in the CGH calculation node generate CGHs corresponding to RGB reconstructing lights in a 3D color video using pipeline processing. Real-time color electroholography was realized for a 3D color object comprising approximately 21,000 points per color.

    Holography, which was invented by Dennis Gabor[1], is widely known as the ultimate three-dimensional (3D) technique for faithfully recording and reconstructing 3D objects. A computer-generated hologram (CGH) is the digital interference fringe calculated by a computer[2]. It may be possible to apply electroholography to 3D television (TV)[35] because it can reconstruct animated 3D images by sequentially displaying CGHs on a spatial light modulator (SLM). However, in such a system, calculating the CGH is computationally prohibitive. Realizing 3D TV using electroholography requires high-performance computational power[6].

    Copy Citation Text
    Shohei Ikawa, Naoki Takada, Hiromitsu Araki, Hiroaki Niwase, Hiromi Sannomiya, Hirotaka Nakayama, Minoru Oikawa, Yuichiro Mori, Takashi Kakue, Tomoyoshi Shimobaba, Tomoyoshi Ito. Real-time color holographic video reconstruction using multiple-graphics processing unit cluster acceleration and three spatial light modulators[J]. Chinese Optics Letters, 2020, 18(1): 010901
    Download Citation
    Category: Holography
    Received: Aug. 18, 2019
    Accepted: Sep. 20, 2019
    Posted: Sep. 20, 2019
    Published Online: Dec. 6, 2019
    The Author Email: Naoki Takada (ntakada@is.kochi-u.ac.jp)