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Abstract: Regional land use change is the main cause of the ecosystem carbon storage 
changes by affecting emission and sink process. However, there has been little research on 
the influence of land use changes for ecosystem carbon storage at both temporal and spatial 
scales. For this study, the Qihe catchment in the southern part of the Taihang Mountains was 
taken as an example; its land use change from 2005 to 2015 was analyzed, the Mar-
kov-CLUE-S composite model was used to predict land use patterns in 2025 under natural 
growth, cultivated land protection and ecological conservation scenario, and the land use 
data were used to evaluate ecosystem carbon storage under different scenarios for the recent 
10-year interval and the future based on the carbon storage module of the InVEST model. 
The results show the following: (1) the ecosystem carbon storage and average carbon density 
of Qihe catchment were 3.16×107 t and 141.9 t/ha, respectively, and decreased by 0.07×107 t 
and 2.89 t/ha in the decade evaluated. (2) During 2005–2015, carbon density mainly de-
creased in low altitude areas. For high altitude area, regions with increased carbon density 
comprised a similar percentage to regions with decreased carbon density. The significant 
increase of the construction areas in the middle and lower reaches of Qihe and the degrada-
tion of upper reach woodland were core reasons for carbon density decrease. (3) For 
2015–2025, under natural growth scenario, carbon storage and carbon density also signifi-
cantly decrease, mainly due to the decrease of carbon sequestration capacity in low altitude 
areas; under cultivated land protection scenario, the decrease of carbon storage and carbon 
density will slow down, mainly due to the increase of carbon sequestration capacity in low 
altitude areas; under ecological conservation scenario, carbon storage and carbon density 
significantly increase and reach 3.19×107 t and 143.26 t/ha, respectively, mainly in regions 
above 1100 m in altitude. Ecological conservation scenario can enhance carbon sequestra-
tion capacity but cannot effectively control the reduction of cultivated land areas. Thus, land 
use planning of research areas should consider both ecological conservation and cultivated 
land protection scenarios to increase carbon sink and ensure the cultivated land quality and 
food safety. 

Keywords: land use; Markov-CLUE-S composite model; InVEST model; carbon storage; scenario simulation; 
Qihe catchment 



1508  Journal of Geographical Sciences 

 

1  Introduction 

Increasing carbon sequestration of terrestrial ecosystem can effectively reduce CO2 concen-
tration in the air (Schimel et al., 2001; Ji et al., 2008; Piao et al., 2009; Fang et al., 2015; 
Dai et al., 2016a). Land use change is one of the most important drivers that lead to the 
change of the terrestrial ecosystem carbon storage, and its contribution to the increase of 
CO2 concentration in the air is only inferior to the fossil fuel combustion (Foley et al., 2005; 
Houghton et al., 2012; Baumann et al., 2017). Thus, evaluating and predicting the effect of 
regional land use change on ecosystem carbon storage and exploring optimized methods for 
land use change to alter ecosystem carbon storage are significant for increasing the capacity 
of regional ecosystem service, and mitigating emission of carbon. 

Previous research has shown that deforestation in tropical areas can cause terrestrial eco-
system carbon storage decrease globally (Navin et al., 2007; Baccini et al., 2012; Houghton, 
2012; Gutierrez-Velez and Pontius, 2012; Nogueira et al., 2018); conversion of farmland to 
construction land and ‘Grain for Green’ Program affect carbon emission at national and re-
gional levels (Laganière et al., 2010; Zhao et al., 2013; Tao et al., 2015; Lai et al., 2016; 
Liao et al., 2016; Han et al., 2017). Some studies have simulated future scenarios of land use 
change and their effects on carbon storage in urban and oasis ecosystems based on models 
(Jiang et al., 2017; Liang et al., 2017) to optimize land use pattern in terms of low carbon 
emission (Wang and Zeng, 2015), and these studies have achieved the prediction for re-
gional ecosystem carbon storage and the spatial visualization of the prediction results. Ac-
cording to previous studies, the effect of land use change on ecosystem carbon storage is 
mainly decided by ecosystem types and how land use types are transformed, and related re-
search will have practical significance for managing future regional ecosystem and provid-
ing suggestions for optimizing land use structure with the objective of carbon balance. 
Catchment is a large complex system that comprises water resource, socio-economy and 
ecosystem, and has clear hierarchical structure and allomeric function, and determining how 
to trade off eco-environmental issues and socio-economic sustainable development in the 
perspective of catchment is an effective pathway for system synthesis (Zhang et al., 2018; 
Qian et al., 2018). Some researchers have previously evaluated spatiotemporal pattern of 
ecosystem carbon storage at catchment level and studied the effects of land use dynamics on 
carbon storage (Wang et al., 2013), but simulation research for future scenarios is still lack-
ing. Conducting multiple scenarios analysis on future catchment land use changes and 
evaluating potential carbon storage can provide a scientific basis for catchment land use 
planning and decision making, and will contribute to the sustainable development of catch-
ment ecosystem.   

CLUE-S (Conversion of Land Use and its Effects at Small region extent) model is a typi-
cal empirical statistical model that treats the competition between different types of land use 
based on systems theory, simulates different land use types simultaneously, and produces a 
spatially explicit display of the simulation results. This model has been recognized as an 
excellent tool for simulating land use changes (Verburg et al., 2002; Jiang et al., 2015; Deng 
et al., 2016). However, the required module of land use amounts in this model needs to be 
calculated by other models or methods. The Markov model is good at predicting land use 
amount changes, and combining Markov with CLUE-S model can not only increase predic-
tion precision for land use amount demand but also effectively simulate spatial variations of 



ZHU Wenbo et al.: Ecosystem carbon storage under different scenarios of land use change in Qihe catchment 1509 

 

 

land use (Hu et al., 2013). The InVEST (Integrated Valuation of Ecosystem Services and 
Tradeoffs) model is based on land use data, and can conduct ecosystem carbon storage 
evaluation under multiple targets and scenarios (Dai et al., 2016b; Zhu et al., 2018). For this 
study, the Qihe catchment in the southern part of the Taihang Mountains was selected as an 
example; this catchment is located in the transitional zone between the North China Plain 
and south Taihang Mountains and has high topographic relief, various topographic types, 
and rich landscape patterns. However, due to continuous disturbance of human activities, 
land use types have changed considerably, which has led to significant changes of the eco-
system carbon storage capacity. Based on land use data of Qihe catchment from 2005 to 
2015, for this paper, the Markov-CLUE-S composite model was used to predict land use 
patterns in the year 2025 under natural growth, cultivated land protection and ecological 
conservation scenarios, and the carbon storage module of InVEST was used to evaluate eco-
system carbon storage for the recent 10-year interval and future under different scenarios. 

2  Data source and methodology 

2.1  Overview of the study area 

Qihe catchment falls on the eastern slope of the southern section of Taihang Mountains, 

between 1317–11423E and 3532–3604N, at east edge of the second step of Chinese 
terrain and connects with the North China Plain (Figure 1). Qihe is the tributary of Weihe, 
which belongs to the Haihe system; it originates from Lingchuan County of Shanxi Province, 
flows through Huguan County in Shanxi Province, Huixian City, Linzhou City, Hebi City, 
Qixian and Xunxian counties in Henan Province, meets Communist Canal in Liuzhuang of 
Xunxian County, and finally flows into Weihe. The length of Qihe is about 165 km, and its 
catchment area is 2227 km2. The altitude decreases from west to east with high topographic 
relief. The study area is traversed by rivers and valleys, its topographic types include basin, 
plain, hill and mountain, hills and mountains comprise 86% of the region (Zhang et al., 

2018). The mean annual temperature is 11.9℃, and the mean annual precipitation is 573.7 

mm, with a seasonal temperate semi-humid monsoon climate. 
 

 
 

Figure 1  Location of the Qihe catchment in China and its digital elevation model (DEM) 
 

The vegetation of this area has significant vertical variation, according to the records of 
vertical zonation of vegetation in the southern section of Taihang Mountains (Kuang, 1991; 
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Ru, 1993), from bottom to top, it presents low-mountain shrub and crop belt, low-to-middle 
mountain deciduous broad-leaved forest belt, middle-mountain coniferous and broad-leaved 
mixed forest belt, and hilltop shrub meadow belt, respectively. 

2.2  Data sources and process 

Land use data includes two terms, the first, from 2005, comes from National Earth System 
Science Data Sharing Infrastructure–Yellow River Downstream Scientific Data Center 
(http://www.geodata.cn/), and the second, from 2015, mainly comes from Landsat 8 OLI 
multispectral images (from Geospatial Data Cloud, http://www.gscloud.cn/), supplemented 
by 2005 and 2010 land use data (from Yellow River Downstream Scientific Data Center), 
DEM and its generated slope and aspect data. Artificial visual interpretation and classifica-
tion were conducted by China Land Use Category System (Liu, 1997) to generate secondary 
class diagrams. We conducted a precision test on interpretation results with the help of 
high-resolution Google Earth images and validation samples were collected in the field, and 
it was verified that the interpretation precision reaches 86%, which satisfied the research 
requirements. Combining the secondary land use classification with the first, six land use 
types were obtained: cultivated land, woodland, grassland, water body, construction land 
and unused land.  

The driving factors selected in this study for land use changes include topography, soil 
and accessible factors. Topographic factors include elevation, slope and aspect, which were 
extracted from DEM (from ASTER GDEM); soil factors include soil type, soil organic mat-
ter and total nitrogen concentration (from Yellow River Downstream Scientific Data Center) 
and were transferred into raster data; accessible factors include the distance to urban, rural 
residential settlements, rivers, provincial roads and county roads, which were calculated by 
Euclidean distance method. Urban and rural settlements were extracted from 2005 secondary 
land use class graph, data for rivers, provincial roads and county roads are from Yellow 
River Downstream Scientific Data Center. All vector data in this study are obtained from 
maps at a scale of 1:100,000, raster data are all in grid format, spatial resolution is 150 m 
and geographic coordinate system is WGS_1984_Albers. 

2.3  Prediction of land use change based on Markov-CLUE-S composite model 

(1) Markov-CLUE-S Composite Model  
The operation of Markov-CLUE-S composite model includes the following five aspects: 
1) Setting of restricted regions. According to the actual situations of Qihe catchment, for 

this study, restricted regions were not set. All land use types are allowed to be transferred.  
2) Converting elastic coefficient and transfer matrix. Converting elastic coefficient repre-

sents the difficulty level of transferring certain land type into others. It can be expressed by 
parameter ELAS (0–1), a larger ELAS value indicates higher stability, and a smaller trans-
formation probability. This study referred to 2005–2015 land use transformation probability, 
combined with 2015 land use simulation precision and Kappa coefficient, and multiple de-
bugging sessions were conducted to achieve the best simulation result. Finally, we set con-
verting elastic coefficients of cultivated land, woodland, grassland, water body, construction 
land and unused land as 0.7, 0.7, 0.7, 0.8, 0.9 and 0.6, respectively. Transfer matrix repre-
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sents the transformation rules of all types of land, 1 represents “can be transferred”, and 0 
means “cannot be transferred”. In this study, the value was set 1 for all the situations. 

3) Calculation of land use demand. This study is based on land use data in 2005 and 2015, 
using the Markov model and linear interpolation to calculate land use demand for both sim-
ulated and selected years. 

4) Spatial analysis. According to land use pattern and driving factor trait data, we em-
ployed Binary Logistic stepwise regression to diagnose the probability of certain land types 
occurring in each raster grid.  

5) Model test. The ROC curve was used to verify logistic regression results. If the result 
is larger than 0.7, then selected driving factor has relatively good explanation capacity (Pon-
tius and Schneider, 2001). The Kappa coefficient was used to verify precision of the simu-
lated results. Large Kappa coefficient means smaller difference of two images and higher 
simulated precision (Lu et al., 2015).  
(2) Land use scenarios 

Since Qihe catchment is not a compact administrative district, it is hard to predict its fu-
ture land use required. For this paper, scenarios analysis was performed, according to fea-
tures of each scenario and General Land Use Planning of Shanxi Province and General 
Land Use Planning of Henan Province, and the modified Markov model process transfer 
probability and CLUE-S model input parameters were used to estimate all each land use 
types of demand in 2025 under different scenarios. Detailed scenarios are: 

1) Natural growth scenario (Q1). According to 2015 land use data and 2005–2015 matrix 
of land use transformation probability, taking 10 years as the step size, we predicted areas of 
all land use types in 2025 within the study area under natural growth scenario. 

2) Cultivated land protection scenario (Q2). This scenario aims to strengthen the protec-
tion of cultivated land through curbing the expansion of construction land and slowing down 
the transformation probability of cultivated land into other land types. Under this scenario, 
the transformation probability of cultivated land into construction land decreased by 80%, 
and the transformation probability of cultivated land into woodland, grassland, and water 
body decreased by 30%, and the probability of cultivated land being transferred into unused 
land decreased by 100%. 

3) Ecological conservation scenario (Q3). This scenario strengthens the protection for 
woodland, grassland and water body, but also strengthens the transformation of other land 
use types into ecological land. Under this scenario, the transformation probability of 
wooland, grassland and water body into construction land decreased by 90%, and the prob-
ability for transforming woodland, grassland and water body into unused land decreased by 
100%, and the probability for cultivated land being transformed into woodland decreased by 
20%, and the probability for transforming cultivated land into construction land decreased 
by 60%. 

Based on the 2005–2015 land use transformation probability, combined with land use 
demand under different scenarios, we formulated ELAS value for all land use types in dif-
ferent scenarios (Table 1). In natural growth scenario (Q1), transformation probabilities of 
all land use types do not change and are the same as probabilities in 2005–2015. In culti-
vated land protection scenario (Q2), because the transformation limit for cultivated land is 
strengthened and unused land is required to be transformed into other types of the land, we 
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increased ELAS value of cultivated land to 0.9 and decreased ELAS value of unused land to 
0.5. In ecological conservation scenario (Q3), to effectively protect ecological land, in-
crease transforming limit for woodland, grassland and water body, also require unused 
land to be transferred into other land types, ELAS value of woodland, grassland and water 
body increased by 0.1, while the ELAS value of unused land decreased by 0.1. 
 

Table 1  The ELAS of all land use types under different scenarios 

Type Cultivated land Woodland Grassland Water body Construction land Unused land 

Q1 0.7 0.7 0.7 0.8 0.9 0.6 

Q2 0.9 0.7 0.7 0.8 0.9 0.5 

Q3 0.7 0.8 0.8 0.9 0.9 0.5 

2.4  Ecosystem carbon storage evaluation based on InVEST model 

(1) Estimation of carbon storage. Usually, the estimation of ecosystem carbon storage by 
InVEST model includes four basic carbon sinks (aboveground, underground, soil and dead 
organic matter). However, due to the difficulty of obtaining carbon sink data for dead or-
ganic matter, for this study, only the other three carbon sinks were considered. The principle 
of calculating carbon storage is: 

 soilibelowiaboveii CCCC    (1) 

    n

i
iitot SCC

1
 (2) 

where i is a certain land use type; Ci-above is the aboveground carbon density of land use type 
i (t/ha); Ci-below is the underground biomass carbon density of land use type i (t/ha); Ci-soil is 
the soil carbon density of land use type i (t/ha); Ctot is the total carbon storage in the ecosys-
tem (t); Si is the area of land use type i (ha); n is the number of land use types, which equals 
to 6 in this study. 

(2) Determination of carbon density data. At first, combining the results of related studies 
(Li et al., 2003) with the root to shoot ratios of different land use types (Fang et al., 1996; 
Piao et al., 2004; Huang et al., 2006), we obtained national levels of aboveground biomass, 
underground biomass and soil carbon density data for cultivated land, woodland and 
grassland; according to a study, we acquired the aboveground biomass and soil carbon 
density for water body, construction land and unused land of Jiangsu Province (Chuai et 
al., 2007), and underground carbon density was 0. Then, we obtained mean annual tem-
perature and precipitation data of the whole nation, Jiangsu Province and Qihe catchment 

through researches, these values are 9℃, 

15.7℃, 11.9℃ and 628 mm, 1040.4 mm, 

573.7 mm, respectively. Finally, we re-
vised data using relationship model for 
biomass carbon density, soil carbon den-
sity, temperature and precipitation from 
studies by Chen et al. (2007), Giardina 
and Ryan (2000) and Alam et al. (2013) 
and obtained carbon density data in the 
study area (Table 2). 

Table 2  Carbon density of different land use types in 
the Qihe catchment, China (t/ha) 

Type Ci-above Ci-below Ci-soil 

Cultivated land 4.02 0.76 105.14 

Woodland 55.74 12.14 174.97 

Grassland 0.39 2.46 96.89 

Water body 0.04 0 64.03 

Construction land  0.01 0 57.63 

Unused land 0.01 0 58.89 
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Based on land use and carbon density data in carbon module of InVEST model, we 
calculated the carbon storage in 2005, 2015 and 2025 in Qihe catchment and conducted an 
in-depth analysis of the spatio-temporal changes. 

3  Results analysis 

3.1  Land use simulation test and change features 

(1) Diagnose of land use change driving factors. The logistic regression model was used to 
conduct regression analysis on 2005 land use data and driving factors (Table 3). Except for 
grassland, ROC values for the land use types were all above 0.8, which means that selected 
driving factors have good explanation capacity for land use spatial pattern. Grassland had 
the lowest ROC value, which is 0.711, mainly due to scattered distribution of grassland, and 
thus had low correlation between its spatial distribution and driving factors. 
 

Table 3  Results of logistic regression for different land use types in 2005 in the Qihe catchment, China 

Cultivated land Woodland Grassland Water body 
Construction 

land 
Unused land 

Encode Beta 
coeffi-
cient 

Exp(B)
Beta 

coeffi-
cient

Exp(B)
Beta 

coeffi-
cient

Exp(B)
Beta 

coeffi-
cient

Exp(B)
Beta 

coeffi-
cient

Exp(B) 
Beta 

coeffi-
cient 

Exp(B) 

Constant 2.1439 8.5329 –4.8852 0.0076 –1.9361 0.1443 –3.7741 0.0230 0.2381 1.2688 –13.1827 0 

sc1gr0 0.0007 1.0007 0.0014 1.0014 –0.0014 0.9986 –0.0023 0.9977 – – 0.0017 1.0017 

sc1gr1 –0.1333 0.8752 0.0980 1.1029 0.0388 1.0395 –0.0896 0.9143 –0.0113 0.9888 0.0738 1.0766 

sc1gr2 0.0004 1.0004 –0.0002 0.9998 – – – – – – – – 

sc1gr3 –0.0150 0.985 0.0105 1.0106 –0.0211 0.9791 0.1532 1.1656 – – – – 

sc1gr4 0.0084 1.0085 0.0638 1.0659 –0.0825 0.9209 –0.2295 0.7949 0.1963 1.2169 – – 

sc1gr5 –0.0325 0.9680 0.1033 1.1088 – – – – – – – – 

sc1gr6 – – 0.0001 1.0001 – – – – – – – – 

sc1gr7 –0.0005 0.9995 0.0002 1.0002 0.0004 1.0004 0.0002 1.0002 –0.0090 0.9911 – – 

sc1gr8 – – – – 0.0001 1.0001 – – – – – – 

sc1gr9 0.0001 1.0001 – – – – 0.0001 1.0001 – – – – 

ROC 
value 

0.810 0.848 0.711 0.843 0.956 0.825 

Note: The represented driving factors by sc1gr0~sc1gr9 are: sc1gr0 altitude (m), sc1gr1 slope(º), sc1gr2 aspect, 
sc1gr3 soil type, sc1gr4 organic matter (g/kg), sc1gr5 total nitrogen (g/kg), sc1gr6 distance to urban area(m), sc1gr7 
distance to rural residential settlements (m), sc1gr8 distance to rivers (m) and sc1gr9 distance to major roads (m); 
‘–‘ means did not pass 0.05 significance test; Beta coefficient is regression coefficient, Exp(B) is the power exponent 
of Beta coefficient based on e and represents the occurrence rate of events. 

 

The distribution probability of cultivated land is mainly related to topography, soil type 
and the distance to rural residential settlements and major roads. Specifically, it is highly 
related to slope, namely, when slope increases by 1º, the distribution probability of culti-
vated land will decrease by 12.48%. The distribution probability of woodland has significant 
positive correlation with total nitrogen concentration in soil; when total nitrogen concentra-
tion increases by 1 g/kg, the distribution probability of woodland will increase by 10.88%. 
The factor for woodland distribution is slope; when slope increases by 1º, the distribution 
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probability of woodland will increase by 10.29%. The distribution probability of grassland 
has significant negative correlation with soil organic matter concentration; when organic 
matter concentration increases by 1 g/kg, the distribution probability of grassland will de-
crease by 7.91%. The next most influential factor for grassland is slope; when slope in-
creases by 1º, the distribution probability of grassland will increase by 3.95%. Compared 
with the above land use types, there are fewer factors that can explain the distribution of 
water body, construction land and unused land, moreover, the correlation between land use 
types and driving factors is not significant. The distribution probability of water body is 
mainly related to soil type and organic matter concentrations; the distribution probability of 
construction land has positive correlation with organic matter and negative correlation with 
slope; the distribution probability of unused land is significantly correlated with both alti-
tude and slope. 

(2) The features of land use change of Qihe catchment in 2005–2015. Table 4 is the land 
use transfer matrix of Qihe catchment in 2005–2015. According to Table 4, 2015 land use 
types were mainly cultivated land, grassland and woodland, their areas occupied 27.08%, 
29.88% and 35.19% of the study area, respectively, followed by construction land and water 
body (5.41% and 2.43%), and unused land occupied the smallest area, only 0.02%. In gen-
eral, cultivated land and woodland areas showed a decreasing trend in 2005–2015, a reduc-
tion of 16.99% and 2.57%, respectively. Water body and construction land were signifi-
cantly expanded, their areas increased by 50.27% and 37.8%, respectively. Area that 
changed in the ten years was 62,286.75 ha, 28.2% of the total area. Cultivated land area 
converted into other land types (25,236 ha) accounted for about twice as much as the areas 
that was transferred-in (12,890.25 ha), and therefore became the main contributor to other 
types of the land. Woodland transferred-out area (16,427.25 ha) was larger than the trans-
ferred-in area (14,670 ha), which was mainly changed into grassland (12,136.5 ha), and the 
transferred-in lands were mainly grassland (8196.75 ha) and cultivated land (6169.5 ha). 
Grassland transferred-out area (16,177.5 ha) was smaller than the transferred-in area 
(25,143.75 ha), and the transferred-in land was mainly woodland (12,136.5 ha) and culti-
vated land (12,144 ha). Water body transferred-out area (2198.25 ha) was smaller than the 
transferred-in area (4009.5 ha), and 61.56% of the transferred-in area was converted from 
cultivated land. Construction land was significantly expanded in the ten years, namely,  

 

Table 4  Land use transfer matrix for 2005–2015 (ha) in the Qihe catchment, China 

2005 

2015 Cultivated 
land 

Woodland Grassland Water body
Construction 

land 
Unused 

land 
Total 

Transferred-in 
Total  

Cultivated land 47422 3262.5 6655.5 1257.75 1714.5 0 60312.25 12890.25 

Woodland 6169.5 51878.75 8196.75 231.75 67.5 4.5 66548.75 14670 

Grassland 12114 12136.5 53237.5 591.75 299.25 2.25 78381.25 25143.75 

Water body 2468.25 623.25 762.75 1404.75 155.25 0 5414.25 4009.5 

Construction 
land 

4475.25 391.5 555.75 117 6499.25 2.25 12041 5541.75 

Unused land 9 13.5 6.75 0 2.25 2 33.5 31.5 

Total 72658 68306 69415 3603 8738 11 222731 – 

Transferred-out 
Total 

25236 16427.25 16177.5 2198.25 2238.75 9 – 62286.75 
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transferred-in area (5541.75 ha) was about 2.5 times of the transferred-out area (2238.75 ha), 
and 80.76% of the transferred-in area came from cultivated land. 

(3) Simulation results test. For the simulated 2015 land use distribution based on land use 
data of 2005, a precision test based on Kappa coefficient was conducted. Figure 2 shows 
2005 land use, 2015 current status and simulated land use result. Correct simulated raster 
grid number is 82,768, and the correct rate is 83.8%, Kappa coefficient is 80.6%, which 
meet our research requirements. 

 

 
 

Figure 2  Land use map of 2005 (a) and 2015 (b) as well as simulated map of 2015 (c) in the Qihe catchment, 
China 
 

3.2  Scenarios analysis of land use changes 

Figure 3 shows the results of land use simulation of Qihe catchment in 2025 under different 
scenarios, and Figure 4 shows land use changes of 2015–2025 under different scenarios. 
According to these two figures, cultivated land area shows a decreasing trend under natural 
growth and ecological conservation scenarios, with decreases of 6081.75 ha (10.03%) and 
3280.5 ha (5.41%), respectively; the decrease will be effectively controlled under cultivated 
land protection scenario, and cultivated land will increase by 3352.5 ha (5.53%). As a main 
ecological land use type, woodland will be effectively protected under ecological conserva-
tion scenario, and its area will reach 68,724 ha (30.84%), whereas it will gradually decrease 
in the other two scenarios. Grassland area shows a significant increase in natural growth 
scenario, with an increase of 4925.25 ha (6.28%). There is a small increase of 486 ha (0.62%) 
under the ecological conservation scenario. However, due to the control of conversion from 
cultivated land to grassland under cultivated land protection scenario, grassland area will be 
reduced. The changes of water body area under the three scenarios are similar to those of 
grassland area, which will increase under natural growth and ecological conservation sce-
narios, but decrease under cultivated land protection scenario. Construction land will in-
crease under all the three scenarios, and expands in a “ring-layer” mode with residential set-
tlements as centers, and expands in an “axis” mode along the two sides of rivers and roads. 
Since both cultivated land protection and ecological conservation scenarios can strengthen 
the protection of cultivated land and ecologically used land, the expansion of construction 
land will be effectively limited, it only increases by 13.5 ha (0.11%) and 297 ha (2.44%), 
respectively, under these two scenarios. Unused land area will increase by 13.5 ha in natural 
growth scenario, but this area will be developed and utilized under cultivated land protection 
and ecological conservation scenarios, and thus will decrease by 20.25 ha and 29.25 ha, re-
spectively in these two scenarios. 
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Figure 3  The simulated results of land use in 2025 under different scenarios in the Qihe catchment, China 
 

 
 

Figure 4  Scenario comparison of land use changes in 2015–2025 in the Qihe catchment, China 
 

3.3  Spatio-temporal change of carbon storage and density in ecosystem 

According to Figure 5a, the total carbon storage values of Qihe catchment in 2005 and 2015 
were 3.23×107 t and 3.16×107 t, respectively. Average carbon density was 144.79 t/ha and 
141.9 t/ha. These values therefore decreased by 0.07×107 t and 2.89 t/ha in the 10 years, re-
spectively. The main reasons for the decrease of carbon storage and density are the expan-
sion of construction land and conversions among woodland, cultivated land and grassland. 
For 2015–2025, carbon storage and density continue decreasing under natural growth sce-
nario, with decreases of 0.03×107 t and 1.38 t/ha, respectively; the decrease rate is lower 
under cultivated land protection scenario, with decreases of 0.01×107 t and 0.44 t/ha; carbon 
storage and density will significantly increase under ecological conservation scenario, with 
increases of 3.19×107 t and 143.26 t/ha, respectively. In conclusion, carbon storage will sig-
nificantly decrease under natural growth scenario, cultivated land protection scenario can 
slow down carbon storage decrease, and ecological conservation scenario can effectively 
increase ecosystem carbon storage. 

 

 
 

Figure 5  Carbon storage, carbon density and the change of carbon density along with the increase of altitude in 
2005, 2015 and different scenarios of 2025 in the Qihe catchment, China 
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Figure 5b shows the change of carbon density along with the change of altitude, and 
Figure 6 shows spatial distribution of carbon density. According to Figure 5b, with the in-
crease of altitude, carbon density of Qihe catchment changes in an “N-shaped” trend. It in-

creases first, then decreases and increases again. High carbon density (≥150 t/ha) region is 

mainly distributed in areas where the altitude is higher than 650 m, which takes up 48% of 
the study area. Seen from Figure 6 (a, b, d, e and f), high carbon density regions are mainly 
located in Lingchuan and Huguan counties of Shanxi Province, a small part is located in the 
junction area between Linzhou and Hebi, Henan Province, which has large proportion of 
woodland; low carbon density regions are located in midstream Linzhou, downstream Hebi, 
Qixian and Xunxian counties, Henan Province. Compared with other regions, this study area 
has larger proportions of construction land and water body, thus has lower carbon density. 

In addition, carbon density decreased mostly in the areas with altitudes lower than 600 m 
or between 1300 m and 1500 m in 2005–2015; carbon density mostly increased in the areas 
with altitudes of 1000–1100 m and 1700–1800 m. Under natural growth scenario, carbon 
density in low altitude area continued decreasing; under cultivated land conservation sce-
nario, carbon density in low altitude area increased slightly; under ecological conservation 
scenario, the increase of carbon density mainly occurred in the area with an altitude higher 
than 1100 m. 

 

 
 

Figure 6  Spatial distribution of carbon density and carbon density changes in 2005, 2015 and different scenarios 
of 2025 in the Qihe catchment, China 

 

According to Figure 6 (c, g, h and i) and Table 5, carbon density changes slightly, over 
96% of the areas do not have changes. In 2005–2015, areas with significant decrease of 
carbon density comprise 3.45% and are scattered in distribution. Carbon density decrease 
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mainly occurred in the middle and lower reaches of Qihe within the boundaries of Linzhou 
and Hebi because of the expansion of construction land, which has occupied cultivated land. 
Carbon density decrease in Qihe upstream is because the woodland was transferred into 
grassland and grassland was transferred into water body areas; areas with significant in-
crease of carbon density take up 0.43% of the total area and are concentrated in the junction 
area between Linzhou and Huguan, as well as the area between Huixian and Lingchuan, 
which is related with ‘Grain for Green’ Program and ‘Ecological Rehabilitation Project’ in 
this region. In 2015–2025, both area with significant decrease of carbon density and area 
with significant increase of carbon density under natural growth scenario will have lower 
proportions, with decreases of 1.61% and 0.12%, respectively. Two types of areas are cross 
distributed in upstream region and decreased carbon density is dominant in low stream re-
gion; under cultivated land protection scenario, the proportion of area with significant de-
crease of carbon density will significantly decrease (0.6%), the proportion of area with sig-
nificant increase of carbon density will be a little bit higher (0.51%), and the two types of 
areas are cross distributed in the upper and middle stream region, whereas the increased area 
is dominant in downstream region due to the effective control of construction land expan-
sion in low altitude area; under ecological conservation scenario, the proportion of area with 
significant decrease of carbon density will be significantly lower (0.17%), with a scattered 
distribution in the middle and downstream region. The proportion of area with significant 
increase of carbon density will be higher (1.1%), this region is mainly concentrated in mid-
dle and upper stream areas where ecological restoration mainly occurs, the conversion of 
cultivated land and grassland into woodland will increase carbon density of this area. 

 

Table 5  Statistics on carbon density changes during 2005–2015 and 2015–2025 under different scenarios in the 
Qihe catchment, China 

Significantly decreased 
(≤20 t/ha) 

Basically unchanged 
(20 to 20 t/ha) 

Significantly increased  
(≥20 t/ha) Time period 

Raster grid Proportion (%) Raster grid Proportion (%) Raster grid Proportion (%) 

2005–2015 3419 3.45 95205 96.11 430 0.43 

2015–2025 (Q1) 1599 1.61 97340 98.27 115 0.12 

2015–2025 (Q2) 595 0.60 97958 98.89 501 0.51 

2015–2025 (Q3) 170 0.17 97795 98.73 1089 1.10 

4  Conclusions and discussion 

4.1  Conclusions 

(1) Cultivated land and woodland areas in Qihe catchment in 2005–2015 declined by 
16.99% and 2.57%, respectively. Water body area and construction land greatly expanded, 
with increases of 50.27% and 37.8%, respectively. In 2015–2025, under natural growth sce-
nario, cultivated land will continue decreasing and construction land will continue expand-
ing; under cultivated land protection scenario, cultivated land will increase by 5.53%, 
whereas construction land will only increase by 0.11%; under ecological conservation sce-
nario, cultivated land will decrease by 5.41%, and ecological land all shows trend of in-
creasing to different degrees. 
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(2) Carbon storage and density in 2015 were 3.16×107 t and 141.9 t/ha, respectively, 
which represent decreases of 0.07×107 t and 2.89 t/ha over the preceding 10 years. In 
2005–2015, carbon density mainly decreased in low altitude area, areas with increased car-
bon density were equal to areas with decreased carbon density in high altitude areas. The 
large expansion of construction land in the middle and lower reaches of Qihe and the wood-
land degradation in the upper reach are the main reasons for carbon density decrease.  

(3) In 2015–2025, under natural growth scenario, carbon storage and density will also 
significantly decrease by 0.03×107 t and 1.38 t/ha, respectively. Areas with decreased carbon 
are far more prevalent than areas with increased carbon, which is attributed to the decrease 
of carbon sequestration ability in low altitude region; under cultivated land protection sce-
nario, the reduction of carbon storage and carbon density is slowed down (0.01×107 t and 
0.44 t/ha), which is due to the strengthening of carbon sequestration ability in low altitude 
region; under ecological conservation scenario, areas with increased carbon are more preva-
lent than areas with decreased carbon, both carbon storage and density will significantly in-
crease and can reach 3.19×107 t and 143.26 t/ha, respectively, mostly occur in the area 
where the altitude is higher than 1100 m. 

In conclusion, carbon sequestration ability in Qihe catchment shows a decreasing trend in 
2005–2015. This decrease continues in natural growth scenario, whereas the cultivated land 
protection scenario can effectively control the decrease, and the ecological conservation 
scenario can strengthen carbon sequestration ability but cannot effectively control the area 
decrease of cultivated land. Therefore, for land use structure optimization of Qihe catchment 
in the future, it will be helpful to consider both cultivated land protection and ecological 
conservation scenario, properly control the expansion of construction land in low altitude 
areas, strengthen the protection for high quality cultivated land, conduct ecological restora-
tion project in high altitude areas, and concede low quality cultivated land on steep hill to 
forest. At the same time, increasing carbon storage, food safety and cultivated land quality 
will be ensured. 

4.2  Discussion 

(1) Carbon density data in this study were obtained through searches and model modifica-
tions, compared with previous regional studies that directly used carbon density value at 
national level, method used in this paper is a novel effort and will be beneficial for improv-
ing accuracy of regional ecosystem carbon storage estimations. Due to the limitation of data 
availability, we collected several kinds of measured or model simulated carbon density data 
around study area and compared them with the results in this study. Wang (2007) found that 
aboveground biomass carbon density of cultivated land and woodland in Taihang Mountains 
were 4.53 t/ha and 50.92 t/ha, respectively, which are close to our modified aboveground 
biomass carbon density of cultivated land and woodland (4.02 t/ha and 55.74 t/ha). Piao et al. 
(2004) found that aboveground and underground biomass carbon densities of grassland in 
Henan Province are 0.63 t/ha and 2.82 t/ha, which are higher than those of grassland above-
ground and underground biomass carbon density in this study (0.39 t/ha and 2.46 t/ha), the 
latter one is closer to our result; Li (2016) found that soil carbon density of construction land 
and unused land in Henan Province are 60 t/ha and 53.3 t/ha, which are in accordance with 
the soil carbon density of construction land and unused land in this study (57.63 t/ha and 
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58.89 t/ha); Chen (2003) found that soil carbon density of woodland in North China region 
is 187.51 t/ha, which is similar to the result in this study (174.97 t/ha). In general, carbon 
density data obtained through model parameter modification in this study is reliable and 
reasonable, and thus illustrates that this method is a fast and an effective way to obtain re-
gional ecosystem carbon density information. 

(2) The application of Markov-CLUE-S composite model has overcome the disadvantage 
of single model, displayed the advantages on quantity prediction and spatial allocation of 
two models, achieved double optimizations quantitatively and spatially for land use change 
simulations, and improved the accuracy of the prediction for future land use patterns. In the 
meantime, there are also some shortages. At first, when setting future land use scenarios, it 
only estimated required areas of all land use types for different scenarios through revising 
Markov model transfer probabilities but did not consider related local policies. However, 
with the social and economic development, future land use changes will be influenced by 
local policies more and more. Thus, how to set more reasonable land use demand combined 
with policy will be a focus for future research on land use change simulations. Second, se-
lection of driving factors has considerable influence on simulation precision. The driving 
factors selected in this study are all easy to be spatialized, such as topography, soil feature 
and distance. However, regional land use changes are usually affected by socio-economy 
and policy. Therefore, selected driving factors are not comprehensive and have weakened 
the explaining effects of regression functions to some degree. In the future, how to quantita-
tively and spatially express socio-economic factors and related policies, and bring them into 
driving factors system, will be crucial to improve simulation precision of CLUE-S model. 

(3) There are some uncertainties regarding the estimated carbon storage. At first, input 
data for InVEST model is uncertain. When the Markov-CLUE-S composite model is used to 
simulate land use patterns in different scenarios, due to less consideration of effects by 
socio-economy and related local policies, simulated results have some uncertainties. In addi-
tion, although the modified carbon density value drawn from previous researches and mete-
orological data is close to carbon density data around the study area, carbon density value 
may undergo dynamic changes under human activities and environmental changes, thus the 
modified carbon density value can be uncertain for carbon storage estimation. Second, the 
uncertainty of estimated results comes from the model itself. Carbon storage module of In-
VEST model is more focused on carbon density difference among various land use types but 
ignores carbon sequestration difference associated with land use types and vegetation age 
organizations, which brought some obstacles to carbon storage service spatial pattern simu-
lations and make the estimation uncertain. In future research, measured data through field 
survey should be obtained to verify the reasonability of carbon density value, or enough 
field monitoring data should be collected to reveal effects on carbon density under inner 
space heterogeneity of land use types and vegetation age structures, to improve the accuracy 
for regional ecosystem carbon storage evaluation. 
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