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Abstract: Frequent chilling injury has serious impacts on national food security and in north-
eastern China heavily affects grain yields. Timely and accurate measures are desirable for 
assessing associated large-scale impacts and are prerequisites to disaster reduction. 
Therefore, we propose a novel means to efficiently assess the impacts of chilling injury on 
soybean. Specific chilling injury events were diagnosed in 1989, 1995, 2003, 2009, and 2018 
in Oroqen community. In total, 512 combinations scenarios were established using the local-
ized CROPGRO-Soybean model. Furthermore, we determined the maximum wide dynamic 
vegetation index (WDRVI) and corresponding date of critical windows of the early and late 
growing seasons using the GEE (Google Earth Engine) platform, then constructed 1600 cold 
vulnerability models on CDD (Cold Degree Days), the simulated LAI (Leaf Area Index) and 
yields from the CROPGRO-Soybean model. Finally, we calculated pixel yields losses ac-
cording to the corresponding vulnerability models. The findings show that simulated historical 
yield losses in 1989, 1995, 2003 and 2009 were measured at 9.6%, 29.8%, 50.5%, and 
15.7%, respectively, closely (all errors are within one standard deviation) reflecting actual 
losses (6.4%, 39.2%, 47.7%, and 13.2%, respectively). The above proposed method was 
applied to evaluate the yield loss for 2018 at the pixel scale. Specifically, a sentinel-2A image 
was used for 10-m high precision yield mapping, and the estimated losses were found to 
characterize the actual yield losses from 2018 cold events. The results highlight that the 
proposed method can efficiently and accurately assess the effects of chilling injury on soy-
bean crops. 

Keywords: chilling injury; Google Earth Engine (GEE); CROPGRO-Soybean; soybean; yield loss; cold degree 
days (CDD) 
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1  Introduction 
Soybean (Glycine max L.) is the world’s most common oil-bearing crop and an important 
protein source for human populations, playing an essential role in global economic devel-
opment (Tomar et al., 2009; Hellal and Abdelhamid, 2013; Das and Parida, 2014). Roughly 
two-thirds of the world’s population does not consume enough protein. To balance popula-
tion growth with protein needs, many countries have recently tried to increase soybean 
yields and planting areas (Li et al., 2019). Planting areas for soybeans in China are the most 
widespread after those for corn, rice, wheat, and potatoes. Soybean crops are also the most 
economically efficient and import intensive crops. Therefore, the soybean is an important 
basic and strategic material and occupies an extremely important position in China’s na-
tional economy. The No.1 document of 2019 issued by Central Committee of the CPC de-
scribes the “implementation of a soybean and dairy revitalization plan” as one of the ten key 
objectives and calls to expand soybean planting areas; promote the demonstration and popu-
larization of new varieties, technologies, and forms of mechanization; stabilize grain pro-
duction; and improve subsidies for soybean producers. Northeastern China is one of the 
country’s main soybean producing areas. Planting areas and yields in northeastern China are 
among the highest in the country, accounting for 1/3 of national soybean planting areas and 
yields and thus playing an important role in food production in China (Liu et al., 2008; Yang 
et al., 2020).  

In terms of global warming, however, warming trends of the crop growing season have 
not been obvious. The crop planting belt has shifted north while varieties ripening later have 
increasingly extended their reach in recent years (Liu et al., 2016a; Fang et al., 2019). As a 
result, chilling injury is the most frequent agricultural problem experienced in northern 
China, resulting in the most serious yield losses (Han et al., 2010; Hao et al., 2010). From 
1951 to 1980, eight severe cold periods occurred, three of which (1969, 1972, and 1976) 
resulted in yield losses of roughly 5.78 billion kg (Zhang et al., 2012). Soybeans grown in 
the northeast at high latitudes suffered more severe and frequent cases of chilling injury than 
those in other areas (Zhou et al., 2017). Due to the insufficient supply of heat and consider-
able temperature variations in northeastern China, soybean can suffer a series of problems 
throughout the growing period, i.e., the delay of the growth period, dysplasia, empty shells, 
and chaff grains, reducing soybean yield and quality and economic losses. Therefore, it is 
essential to monitor chilling injury occurrence and evaluate yield losses of soybean crops in 
northeastern China (Liu et al., 2012). 

Several recent studies have monitored chilling injury and assessed yield losses mainly 
using crop modelling and remote sensing monitoring. The calibrated crop model can also be 
used to simulate chilling injury scenarios at the field level. While these methods are easily 
applied at the field level, inferring to larger areas has limited validity due to a need of exten-
sive and detailed information (e.g., variety characteristics, climate variables, soil conditions, 
and field management and cultivation methods). While these data are easily available at the 
field level, errors are inevitable when using field-level data for regional estimations due to 
high levels of spatial heterogeneity (Sinclair et al., 1993). Remote sensing monitoring, the 
constructed vegetation index and the temperature index mainly focus on distinguishing oc-
currences and levels of chilling injury. In addition, chilling injury indices and ground-based 
yield measurements collected in years with natural disasters are used to establish empirical 
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relationships. However, while remote sensing monitoring can explain over 80% of yield 
variations among individual fields (Sinclair et al., 1993; Liu et al., 2016b), it is difficult to 
extrapolate these equations to new locations or years due to their limited spatial generaliza-
bility. In addition, while numerous studies have focused on impacts of chilling injury on 
corn and rice crops in northeastern China (Liu et al., 2016b; Chen, 2017), few have explored 
the impacts of chilling injury on soybeans in the same region. The above limitations high-
light the need to develop more general means to quickly and accurately evaluate the effects 
of chilling injury on soybean crops. 

Yield loss assessments, coupling crop models and remote sensing monitoring have been 
major issues of focus in recent years. The Google Earth Engine (GEE), with its powerful 
data storage and cloud computing capabilities, allows for the free sharing of image data 
(Gorelick et al., 2017) and the CROPGRO-Soybean model can dynamically and intuitively 
simulate soybean growth, development, and yields. These new tools allow for soybean 
growth monitoring and disaster loss assessment at high spatiotemporal resolutions (Boote et 
al., 2003). Using the GEE platform and crop model, we develop a fast, accurate, and 
cross-regional method for evaluating the impacts of chilling injury on soybean yields in 
northeastern China. We first optimize parameters of a localized soybean model, simulate 
cold injury scenarios to construct soybean chilling injury vulnerability models, and then 
spatialize yield loss mapping at a high resolution. Finally, yield losses at the county level are 
used to evaluate the performance of the proposed technique. Our aim is to provide a new 
method of soybean yield estimation and disaster loss assessment. 

2  Study area and data sources 

2.1  Study area 

Oroqen Autonomous Banner, lying between 48°50′–51°25′N and 121°55′–126°10′E, is lo-
cated between the Da Hinggan Mountains and Hulun Beir Grassland. It covers an area of 
approximately 6×104 km2 with roughly 2.1×103 km2 of cultivated land. The local terrain, 
which includes plateaus, mountains, and hills, forms a typical plateau landscape. The study 
area is characterized by a sub-humid warm temperate continental monsoon climate with four 
distinct seasons. Average annual temperatures range from –2.7℃ to 0.8℃ and increase 
from west to east. Temperatures can reach as low as –30℃ in January and as high as 37.5℃ 
in July with average temperatures ranging from 17.9℃ to 19.8℃. Approximately 95 d in 
the year are frost-free. Annual precipitation reaches 459.3–493.4 mm. Moreover, wind 
speeds are relatively low at 1.8 to 2.9 m/s. The Oroqen area serves as a major grain producer 
in the Inner Mongolian Autonomous Region with an average annual production level of 200 
million kg. Soybean is the most common crop grown in this region (Figure 1). 

2.2  Dataset and preprocessing 

2.2.1  Satellite data  

Remote sensing has been widely used for crop growth monitoring and yield prediction, as it 
rapidly, macroscopically, and dynamically captures a wide range of data on the earth’s 
surface through various bands (Chen et al., 2016). The Landsat 5 and Sentinel-2A surface  
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Figure 1  Overview of the study area 
 

reflectance products were first preprocessed on the GEE platform, i.e., radiation, geometric, 
and atmospheric correction. We then selected all available images visualizing critical soy-
bean growth stages (i.e., May–September) using JavaScript API, including Landsat 5 images 
for 1984 to 2012 with a 30-m resolution and 16-d repeat and Sentinel-2A images for 2017 to 
2019 with a 10-m resolution and 5-d repeat. Their quality control (QA) bands were used to 
remove effects of clouds using codes for Landsat 5 and Sentinel-2A images available at 
https://code.earthengine.google.com/dc10f7a140c2fe51aa30dfab08 and https://code.earthen-
gine.google.com/6c7863acf90a59607fd4ec2cd6beadde, respectively. After the above proc-
essing, we obtained the spectral curve and calculated the vegetation index with good fit to 
the ground-based curve measures. 

2.2.2  Meteorological and soil data 

Daily climate data for 1981 to 2018, including those for average, maximum and minimum 
temperature (℃); rainfall (mm); and sunshine hours (h), were obtained from the National 
Meteorological Information Centre (https://data.cma.cn/en). Solar radiation levels were cal-
culated according to previous research (Angstrom et al., 1924). Soil data used for the crop 
model are available from the Chinese soil science database (http://vdb3.soil.csdb.cn/) and 
include data on bulk density; organic carbon; total nitrogen; pH; and percentages of silt, 
sand, and clay. Soil albedo, runoff potential, and drainage rate values were also estimated 
(Jones et al., 2003). The soil fertility factor (SLPF) was set as 1.0, and the initial soil mois-
ture content level was set as the field moisture capacity. 

2.2.3  Land use and field measurement data 

Six ground-based field measures for 2014 to 2017 for model calibration and localization and 
a soybean planting area map of Oroqen with a 10-m resolution were obtained from a local 
insurance company. As shown in Tables 1 and 2, ground-based field data used mainly in-
clude location data, basic information on soybean crops (e.g., variety maturity, yield, cultivar, 
and development period), and field management data (tillage, weeding, irrigation, fertiliza-
tion, etc.). Recorded Oroqen soybean yields at the county level were obtained from the De-
partment of Plantation Management (http://www.zzys.moa.gov.cn) and the Statistical Year-
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book for Inner Mongolia for 1981 to 2017 (http://www.stats.gov.cn). River and administra-
tive divisions were derived from the Resource and Environment Data Cloud Platform 
(http://www.resdc.cn). Finally, projections of all data were uniformly converted to 
WGS-1984 form. 

 

Table 1  The observation information of key growth period, planting density and yield of crop fields 

Year Crop field Wuchagou Xingsheng Chuntinge Chunlin Naimuhe Xiaokumo 

Sowing date 16 May. 18 May. 1 May. 18 May. 28 May. 11 May. 

Flowering date 14 Jul. 12 Jul. 30 Jun. 6 Jul. 18 Jul. 30 Jul. 

Maturity date 26 Sept. 28 Sept. 18 Sept. 28 Sept. 28 Sept. 24 Sept. 

Plant density (plants/m2) 39.69 30.42 47.73 36.75 37.98 38.47 

2014 

Yield（kg/ha) 1160 1350 1650 1150 610 1050 

Sowing date 16 May. 16 May. 28 May. 8 May. 17 May. 18 May. 

Flowering date 16 Jul. 10 Jul. 2 Jul. 12 Jul. 16 Jul. 8 Jul. 

Maturity date 16 Sept. 14 Sept. 28 Sept. 28 Sept. 28 Sept. 8 Sept. 

Plant density (plants/m2) 47.94 35.6 38.18 26.24 25.84 28.58 

2015 

Yield（kg/ha) 980 1100 1410 1030 510 860 

Sowing date 6 Jun. 16 May. 6 May. 22 May. 18 May. 18 May. 

Flowering date 20 Jul. 14 Jul. 28 Jul. 28 Jul. 2 Jul. 2 Jul. 

Maturity date 30 Sept. 26 Sept. 18 Sept. 30 Sept. 18 Sept. 14 Sept. 

Plant density (plants/m2) 32.97 30.55 40.04 42.9 40.8 35.82 

2016 

Yield（kg/ha) 1280 1450 1850 1370 670 1110 

Sowing date 24 May. 23 May. 21 May. 18 May. 24 May. 2 Jun. 

Flowering date 8 Jul. 12 Jul. 22 Jul. 8 Jul. 1 Jul. 14 Jul. 

Maturity date 28 Sept. 24 Sept. 22 Sept. 18 Sept. 18 Sept. 24 Sept. 

Plant density (plants/m2) 43.5 35.76 27.56 36.9 40.6 52.36 

2017 

Yield（kg/ha) 1350 1500 1240 1500 750 1200 

 
Table 2  The basic information of six crop fields 

Crop field Wuchagou Xingsheng Chuntinge Chunlin Naimuhe Xiaokumo 

Longitude (°) 124.42 124.49 124.49 124.42 124.11 124.17 

Latitude (°) 50.10 49.97 49.83 49.83 49.4 49.7 

Elevation (m) 486 393 380 365 381 447 

Cultivar Heihe 38 Heilong 35 Hefeng 50 Hefeng 25 Hefeng 39 Heihe 18 

Maturity Medium Medium Medium Mid-late Medium Medium 

Cultivation way Drilling  Drilling  Drilling Ridge tillage Drilling  Drilling  
 

3  Method  

3.1  Determination of historical cold years 

Chilling injury assessment first involves determining historical cold years. According to 
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previous research (Pang et al., 
1983), two conditions should 
be met: (1) total Growing De-
gree Days (GDD), i.e., the 
mean daily temperature of 
above 10 ℃  for the growth 
period in a given year is less 
than 100℃  that of the his-
torical mean soybean growth 
stage, and (2) lower soybean 
yields in the current year than 
in the preceding normal year 
(Pang et al., 1983). In this re-
search, we only focus on iden-
tifying historical cold years 

and do not distinguish the degree of chilling injury. Years with GDD with temperatures 
below the historical mean of –100℃ include 1989, 1991, 1995, 2003, 2009, and 2018 
(Figure 2), which is consistent with previous research (Zhang, 2017). However, no soy-
bean yield losses occurred in Oroqen in 1991. Therefore, we only use 1989, 1995, 2003, 
2009, and 2018 as historical cold years. Meanwhile, the preceding years within the study 
period (i.e., 1988, 1994, 2002, 2008, and 2017) are selected as normal years for our 
comparative analysis. 

3.2  Localization of the CROPGRO-Soybean model 

The CROPGRO-Soybean model available through DSSAT 4.7 has been widely used to 
simulate soybean growth and development around the world (Wang et al., 1995; Zhu et al., 
2008). In the CROPGRO-Soybean model, 15 genetic parameters can determine a soybean 
cultivar (Table 3). In this study, ground-based field measurements for 2014 to 2017 were 
used to adjust optimal parameters and then for model localization. First, genetic parame-
ters were initialized, and the number of iterations was set as 6000. Soybean variety pa-
rameters were calculated based on the GLUE (Generalized Uncertainty Estimation) mod-
ule of the DSSAT model. Specifically, field measurements for 2014 to 2015 were used for 
model calibration, and those for 2016 to 2017 were used for model testing. The genetic 
parameters of six crop fields were then successively simulated. Finally, Root Mean Square 
Error (RMSE) and Relative Root Mean Square Error (RRMSE) tests were used to estimate 
deviation between the simulated and observed variables (i.e., flowering date, maturity date, 
and yield). 
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Figure 2  The cold years in Northeast China 
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Table 3  CROPGRO-Soybean model parameters and the genetic coefficients of crop fields 

Coefficient Definition Default 
value Wuchagou Xing-

sheng Chuntinge Chunlin Naimuhe Xiao-
kumo 

CSDL 
Critical short day length below which 
reproductive development progresses 
with no day length effects (h) 

12.15 14.03 12.23 13.06 14.58 11.9 14.03 

PPSEN Slope of the relative response of devel-
opment to photoperiod with time (1/h) 0.2 0.235 0.294 0.287 0.229 0.146 0.304 

EM-FL Time between plant emergence and 
flower appearance (day) 21 13.09 18.33 15.46 16.53 26.14 22.74 

FL-SH Time between first flower and first pod 
(day) 6 6 6 6 6 6 6 

FL-SD Time between first flower and first seed 
(day) 12 19.82 21.06 18.42 18.39 11.26 12.06 

SD-PM Time between first seed and physio-
logical maturity (day) 26 37.56 24.5 36.63 31.27 22.25 34.33 

FL-LF Time between first flower and end of 
leaf expansion (day) 20 20 20 20 20 20 20 

LFMAX 
Maximum leaf photosynthesis rate at 
30℃, 350 vpm CO2, and high light (mg 
CO2/m2 s) 

1.03 1.023 1.052 1.034 1.011 1.196 1.257 

SLAVR Specific leaf area of cultivar under 
standard growth conditions (cm2/g) 385 311.2 303.8 301 317.6 337.9 301.1 

SIZLF Maximum size of full leaf (three leaf-
lets (cm2) 137 138.1 145.1 138 141.2 188.5 217.6 

XFRT Maximum fraction of daily growth that 
is partitioned to seed+shell () 1 1 1 1 1 1 1 

WTPSD Maximum weight per seed (g) 0.155 0.162 0.157 0.161 0.181 0.195 0.186 

SFDUR Seed filling duration for pod cohort at 
standard growth conditions (day) 22 25.42 24.88 24.22 25.36 21.62 21.94 

SDPDV Average seed per pod under standard 
growing conditions (numbers per pod) 2.2 2.415 2.276 2.09 2.24 2.397 1.794 

PODUR Time required for cultivar to reach final 
pod load under optimal conditions (day) 13 13 13 13 13 13 13 

 

3.3  Yield loss estimation 

Yield loss assessment involves five steps: (1) simulating different combinations of cold and 
local field management scenarios based on the localized CROPGRO-Soybean model and 
then recording the simulated yield, daily Leaf Area Index (LAI), and the corresponding date 
(Day of year, DOY); (2) calculating GDD of each simulation scenario and then subtracting 
the mean number of GDD occurring from 1981 to 2018, namely, as Cold Degree Days 
(CDD); (3) constructing a vulnerability model of chilling injury from the simulated yield, 
CDD, and any combination of two LAIs for the critical growth period; (4) retrieving the ac-
tual LAI and acquisition date (DOY) of soybean planting grids on the GEE platform and 
calculating the actual number of CDD based on meteorological data; and (5) calculating the 
yield reduction rate on a pixel-by-pixel basis using the best available observation dates for 
each pixel. 
3.3.1  Simulation of cold injury scenarios 

A calibrated model can better simulate the impacts of climatic factors on crop growth and 
development and assess yield loss (Pang, 2015). In this study, a series of combined parame-
ters of different sowing dates and planting densities was first generated. According to local 
field management records, sowing dates are set at equal intervals (5 d) from May 1st to June 
6th and include May 1st, 6th, 11th, 16th, 22th, and 27th and June 1st and 6th. Planting den-
sities were randomly generated at between 19.42 and 52.36 plants/m2, including values of 
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19.42, 22.77, 31.82, 35.86, 38.87, 41.06, 47.43, and 52.36 plants/m2. We also set up normal 
weather scenarios and seven cold injury scenarios: (1) three cold injury scenarios with daily 
temperature reductions of 1–3℃ across growth stages and (2) four other cold injury sce-
narios set randomly at a minimum temperature of 0℃ for 5 consecutive days from seedling 
emergence to the flowering stage, from the pod bearing stage to the pod bearing stage, and 
from the pod bearing stage to the mature stage. For each soybean field, we have 512 (8*8*8) 
simulation scenarios. Finally, the daily LAI and corresponding simulated yield of all soy-
bean fields in the growth stage were recorded for analysis. 

3.3.2  Calculating the chilling injury index 

Effective accumulated temperatures exceeding 10℃ during the soybean growth periods of 
the simulation scenarios were calculated. Namely, the number of GDD and CDD was calcu-
lated by subtracting the mean number of GDD occurring in growth periods from 1981 to 
2018. This CDD index was then used to determine the impact of chilling injury on final 
yields (Ma et al., 2003). Since the sowing dates and weather conditions are different for each 
simulation, the CDD values calculated from each simulation are also different. The CDD 
calculation formula is as follows: 

 




n

n
i GDDDCDD

1  
                   (3) 

where CDD is the effective accumulated temperature anomaly obtained from each simula-
tion, D is the average daily temperature exceeding 10℃ on day i of the simulation growth 

period, n is the length of each simulation growth period, and GDD  is the average effective 
accumulated temperature value of larger than 10℃ during the same period from 1980 to 
2018. 

3.3.3  Constructing vulnerability models of chilling injury  
We expanded our analysis to 40 d before and after the soybean flowering date to create early 
and late windows. The simulated yields of 512 combination scenarios for six crop fields 
(6*512) were used as the dependent variable, and any two LAIs from the early and late 
windows and  CDD were used as independent variables to construct multiple regression 
equations. A total of 1600 (40*40) equations were established. 

 
CDDβLAIβLAIββYield ,d,d  322110

    (4) 

where Yield represents the output of each simulation and LAI1,d and LAI2,d denote the LAI d 
days from the early window and late window, respectively. CDD represents the cool injury 
index for each simulation. β0, β1, β2, and β3 represent the regression coefficients of the con-
stant, the LAI of the early window, the LAI of the late window, and CDD, respectively. Be-
cause the dates of usable imagery may differ by location and year and particularly for optical 
imagery for which cloud cover can vary by pixel, we compute regressions for an arbitrary 
number of combinations of image dates. Finally, we store the resulting coefficients for fur-
ther analysis. 

3.3.4  Estimations of yield loss in cold years 

Previous studies have shown that the Wide Dynamic Range Vegetation Index (WDRVI) is 
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sensitive to variations in the LAI and is closely related to the LAI (Anthony et al., 2012). 
Therefore, we first use the GEE platform to extract the maximum WDRVI and DOY of the 
early and late windows on a pixel-by-pixel basis and convert the WDRVI into the actual LAI 
of soybean planting grids (Lobell et al., 2015). We then apply regression equations to actual 
measurements obtained from satellite data (i.e., the actual LAI calculated from the WDRVI 
and DOY). This can generally be done on a pixel-by-pixel basis using the maximum 
WDRVI and DOY of the early and late windows for each pixel. The final step is to estimate 
yield and reduction rate at the pixel level and then generate yield estimations and yield re-
duction maps with a high resolution (i.e., 10 or 30 m). Due to a lack of other field measure-
ments, we calculate the county-level yield and yield reduction rate from the mean of the 
pixel yield and reduction rate and use the recorded county-level yield to evaluate the per-
formance of our proposed technique when applied to the Oroqen area. The yield reduction 
rate is expressed as “(the annual yield of a normal year – the annual yield of a cold year)/the 
annual yield of a cold year ×100%.” 

 
NIR red

NIR red

αρ ρWDRVI
αρ ρ




  
                 (5) 

   ln (1 79 ) 0 532 0 3LAI . WDRVI . / .                    (6) 

where ρNIR and ρred represent reflectance at near infrared and red wavelengths, respectively. 
α is set to 1 to ensure linearity between WDRVI and LAI (Jiang et al., 2019).  

4  Results and analysis 
4.1  The performance of the CROPGRO-Soybean model 

Comparisons of the observed and simulated variables for soybean crops for 2014 to 2017 
show that CROPGRO-Soybean model effectively simulate the actual ADAT (Time to anthe-
sis as days after planting) and MDAT (Time to maturity as days after planting) (Figure 3). 
The RMSE values for average flowing and maturity dates are less than 5 d and 6 d, respec-
tively. The RRMSE values are below 9.3% and 7.9%, respectively. The RMSE for yields is 
93.3 kg/ha and the RRMSE for yields is 8.0%. Overall, the simulation of the maturity date is 
superior to that of the yield and flowing date, but all simulation results falls within a rea-
sonable range (RRMSE≤10%), indicating that the calibrated CROPGRO-Soybean model 
can reflect soybean growth and yields under different weather and management scenarios. 

 

 
 

Figure 3  Comparison between simulated and observed variables of soybean 
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4.2  The results of vulnerability models 

Figure 4 illustrates the simulated profiles of soybean LAIs determined from 512 simulations. 
The LAI values vary considerably from 2 to 7, which is largely due to the fact that soybean 
growth processes are variable under different weather conditions and farming management 
systems. Note that the early and late windows (denoted by shaded rectangles in the figure) 
basically cover the critical growth period of each simulation. These simulation results thus 
show a broad range of variability in training the regression model given in Eq. (1).  

 

 
 

Figure 4  Daily leaf area index outputs from 512 simulations of the CROPGRO-Soybean model (the shaded 
rectangles indicate the “early-season” and “late-season” windows used for image observations) 

 
Intuitively, the capacity for a linear regression model based on the LAI to explain simu-

lated variability depends on the specific times at which observations are made (Figure 5), 
but this was generally found to be high (R2>0.8), especially for LAIs measured roughly 
DOY 191 and 210 from the early window and on all dates within the late window (R2>0.95). 
This is mainly the case because the vegetation index is closer to the maximum value during 
this period, and thus LAIs can capture more soybean crop canopy foliage and chlorophyll 
content and final yield variations. In addition, minimal training errors do not guarantee good 
data performance, as considerable input data (e.g., weather and soil) include errors in reality, 
and crop models do not perfectly capture all relevant processes of crop growth and devel-
opment (Lobell et al., 2015). Nonetheless, it is found that the high R2 indicates any two LAI 
observations and CDD during the critical growth period should in many cases be sufficient 
to obtain accurate yield estimations. 

4.3  Estimation of yield loss  

4.3.1  Actual LAI based on the GEE platform  

Figure 6 shows the two maximum LAIs (6a and 6b) and the corresponding DOY image (6c 
and 6d) for the early and late windows are based on the GEE platform. The actual maximum 
LAIs are similar to the simulated LAIs and range from 6 to 7.2, indicating that the seven  
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Figure 5  The coefficient of determination (R2) for the regression models 
 

 
 

Figure 6  The maximum LAI and its specific observation dates of early and late growing season windows ob-
tained from Sentinel-2 in 2018 (a and c represent the maximum LAI and its specific observation dates of early 
growing season windows; b and d for late growing season windows, respectively) 
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simulated cold injury scenarios can accurately describe the relationship between local chill-
ing injury and yields. While the specific timing at which satellite observations of soybean 
planting grids are taken is not consistent, limitations in spatial and temporal discontinuity 
affecting remote sensing images can be overcome by combining two LAI observations col-
lected during the growth season. Thus, our method can creatively extrapolate crop model 
simulations from the field level to large-scale yield estimations and disaster monitoring at a 
high resolution. 

4.3.2  Yield simulation under different cold injury scenarios 

We simulated seven scenarios to explore the effects of different cold injury events on soy-
bean yields. The simulated yields varied widely under different cold injury scenarios as il-
lustrated in Figure 7. During growth stages (i.e., scenarios 1, 2 and 3), the more temperatures 
decreased, the more soybean yields decreased. During the soybean growing season, the daily 
minimum temperature decreased by 1℃, GDD decreased by roughly 100℃, and yields 
ranged from 910.5 to 1242.5 kg/ha. The daily mean temperature decreased by 2℃, GDD 
decreased by roughly 200℃, and yields ranged from 571.8 to 838.0 kg/ha. The daily mean 
temperature decreased by 3℃, GDD decreased by roughly 300℃, and yield ranged from 
273.8 to 435.7 kg/ha. Soybean plants are thermophilic crops, especially after reaching the 
flower bud stage. Thus, chilling injury inhibits crop growth in the following stages, leading 
to filling stage obstruction and then (sometimes extreme) yield reductions. Additionally, 
scenarios 4, 5, 6 and 7 show that soybean yield responses to decreased temperatures in dif-
ferent stages vary with the strongest impacts observed from the pod bearing stage to the fill-
ing stage. This is the case because soybeans are more sensitive to temperatures in later 
stages, as chilling injury in the filling stage affects fruit formation, increases abortive grain 
levels, and delays maturation, resulting in (sometimes extreme) yield reduction, which is in 
line with previous research (Sang et al., 2013).  

 

 
 

Figure 7  Estimated yields by calibrated CROPGRO-Soybean model under different cold injury scenarios (sce-
narios S1, S2 and S3 are set as reducing 3℃, 2℃ and 1℃ at the whole growth stages, respectively. Scenario 
N4 is set as actual weather. Scenarios S5, S6, S7 and S8 are set randomly as minimum temperature of 0℃ for 
5 consecutive days during the periods from seedling emergence to flowering stage, flowering stage to pod 
bearing stage, and pod bearing stage to filling stage, and filling stage to maturity stage, respectively.) 
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4.3.3  Estimating the rate of yield reduction at the county level in historical cold years  

According to our analysis of historical meteorological data for Oroqen, five years (1989, 
1995, 2003, 2009 and 2018) were set as historical cold years while the preceding years 
(1988, 1994, 2002, 2008 and 2017) were set as normal years. As no Sentinel-2A images for 
before 2015 were available, Landsat 5 images with a 30-m spatial resolution were used to 
generate yield maps. For 2017 and 2018, Sentinel-2A images were used to generate yield 
maps with a 10-m resolution. Finally, we calculated the yield reduction rate for five cold 
years via yield mapping. However, due to a lack of field measurements, the county-level 
yield reduction rate was calculated from the mean of all pixels. As shown in Figure 8 (please 
note that the actual recorded yield for 2018 is missing), the change in the historical yield 
reduction rate is similar to the distribution of GDD reduction (Figure 2) for soybean growth 
stages. For example, GDD was the lowest in 2003, causing the most serious chilling injury 
and the highest yield reduction rate for 
this year (actual of 47.7% vs. simulated 
of 50.5%); the lowest reduction rate 
occurred in 1989 when the simulated 
reduction rate was 9.6% while the actual 
reduction rate was 6.4%. While the 
simulated yield reduction rate of 1995 is 
slightly higher than the actual yield re-
duction rate, other simulated reduction 
rates for 1989, 2003, and 2009 are 
slightly lower than actual records. Er-
rors of the simulations of historical cold 
years fall within 1SD, indicating that 
the proposed method can accurately 
evaluate soybean yield losses caused by 
chilling injury. 

4.3.4  Yield spatial distributions in 2017 and 2018 

Our evaluation results for historical cold years indicate that our method can accurately 
simulate the yield loss caused by chilling injury in Oroqen. We thus used this technique to 
generate a yield spatial distribution map for the last cold year (2018) and its preceding year 
(2017, defined as the normal year) (Figure 9). The county-level yield was obtained from the 
average of all pixels. Estimated county-level yields for 2017 and 2018 are 2004.6 kg/ha and 
1540 kg/ha, respectively. As illustrated in Figure 9, the estimated yield for cold years (i.e., 
2018) is significantly lower than that for normal years (i.e., 2017), which is consistent with 
actual conditions. According to our magnification figures (Figures 9a-9d), the yield losses of 
different fields vary in the midst of chilling injury. Figures 9a and 9b show that field yields 
were significantly lower in 2018 than in 2017 after chilling injury, that some areas (Figure 9c) 
maintained similar yields in both years, and that for a few fields (Figure 9d) yields slightly 
increased from 2017 levels. Our field investigations of Oroqen show that such trends are 
attributable to differences in field management measures, irrigation conditions, and topog-
raphic features. 

 
 

Figure 8  The comparison between actual and simulated 
yield losses 
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Figure 9  Spatial distribution of estimated yields in normal year (2017) and cold year (2018) 
 

4.3.5  Yield reduction rate assessment for 2018 

Spatially, our results show that yields in Oroqen decreased significantly from 2017 to 2018 
(Figure 10). Slight yield losses occurred throughout the study area with the exception of a 
few areas showing significant yield losses (i.e., the northeastern section of the study area) 
and others showing no changes (i.e., the southern section of the study area). Oroqen’s yield 
reduction rate reached 23.1% in 2018. The reduction rate caused by chilling injury at the 
town level is shown in Table 4, illustrating that roughly 98% of the area suffered slight yield 
reductions except in a town not affected by the disaster, which shows a reduction rate of 
–29.94%. Thus, chilling injury had serious impacts on soybean crops in Oroqen in 2018. 

5  Conclusions and discussion 
By combining the GEE platform with crop modelling, yield losses caused by chilling injury 
to Oroqen soybeans were evaluated at a 10-m resolution, and a high-resolution yield map 
was produced. We found that our calibrated crop model can simulate crop growth and yield 
variations under different climate scenarios and field management measures and that yield 
losses caused by continuous soybean cooling (i.e., 1–3℃) over several growth stages are  
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Table 4  The estimated yield losses of soybean at town level 

Town Yield loss (%) Town Yield loss (%) Town Yield loss (%) 

Karichu 21.23 Wobei 29.77 Xiangyang 24.35 

Lingnan 14.64 Zhaxi 19.54 Wuerqi 31.14 

Neerkeqi 22.61 Wuchagou 15.86 Chaoyangliehu 21.19 

Qingsonggou 24.52 Naimuhe 25.15 Shiliudongfang 32.28 

Tuanjie 19.38 Maweishan 18.34 Nuominghe 6.54 

Yuchang 8.76 Kuweidi 22.58 Xiaoerhong 18.08 

Xinxing 9.55 Yuejing 28.83 Longtou 29.25 

Oukenhe 18.24 Kuilehe 5.29 Xinfeng 20.63 

Xingsheng 28.04 Dongsheng 21.52 Woluohe 30.79 

Ershili 29.94 Xiaokumo 17.63 Tiedong 30.05 

Wulubutie 9.53 Doushigou 21.30 Dakumo 21.58 

Hongqi 22.65 Chaoyanggou 22.67 Ergenghe 7.97 

Maanshan 18.52 Xinfa 26.92 Dongsheng 21.52 

Chunlin 26.02 Chuntinge 16.09 Maojiapu 18.77 

 

 
 

Figure 10  The spatial distribution of yield losses in 2018 relative to 2017 
 

more serious than those caused by a single growth period (i.e., four randomly selected 
growth periods with a minimum temperature of 0℃ lasting 5 consecutive days). In com-
paring simulated and recorded county-level soybean yields, we conclude that our novel 
technique can effectively simulate soybean yields. Moreover, county-level yield reduction 
rates are basically consistent with actual conditions observed in historical cold years, and 
spatial variations of yield losses can be effectively characterized at the pixel level. Com-
pared to the traditional crop model and remote sensing monitoring, this novel method is 
more efficient and accurate and can be applied for large-scale, high-resolution field yield 
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estimations and disaster assessments. Therefore, the present study provides a new frame-
work for soybean yield and disaster loss assessment. 

Nonetheless, due to a lack of data on yield losses at the field level, it is necessary inte-
grate all yields of the pixel level with those of the county level to evaluate the model’s 
performance. More ground-based yield measurements should thus be collected to further 
verify the capacities of the proposed technique. To produce yield loss maps with a 10-m 
resolution, we used Sentinel-2A images. However, as the Sentinel series was launched in 
2015, for disaster years preceding 2015, only Landsat 5 series with a 30-m resolution 
can be used for map analysis. Therefore, future studies should focus on combining 
multi-source remote sensing data and multi-crop models for yield prediction and loss 
assessments. 
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