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Abstract: Drought is one of the most frequent and widespread natural disasters and has 
tremendous agricultural, ecological, societal, and economic impacts. Among the many 
drought indices, the standardized precipitation index (SPI) based on monthly precipitation 
data is simple to calculate and has multiscale characteristics. To evaluate the applicability of 
high spatiotemporal resolution satellite precipitation products for drought monitoring, based 
on the Tropical Rainfall Measuring Mission (TRMM) products and station-based meteoro-
logical data, the SPI values at different time scales (1, 3, 6, and 12 months) were calculated 
for the period of 1998–2016 in the middle and lower reaches of the Yangtze River Basin 
(MLRYRB). The temporal correlations show that there is a high degree of consistency be-
tween calculations at the different time scales (1, 3, 6 and 12 months) based on the two data 
sources and that the amplitude of fluctuations decreases with increasing time scale. In addi-
tion, the Mann-Kendall (MK) test method was applied to analyze the trends from 1998 to 2016, 
and the results suggest that wetting trends clearly prevailed over drying trends. Moreover, a 
correlation analysis of the two data sources based on 60 meteorological stations was per-
formed with the SPI values at different time scales. The correlation coefficients at the short 
time scales (1, 3, and 6 months) are all greater than 0.7, and the correlation coefficient at the 
long time scale (12 months) is greater than 0.5. In summary, the results demonstrate that the 
TRMM 3B43 precipitation product provides a new data source that can be used for reliable 
drought monitoring in the MLRYRB. 
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1  Introduction 
Drought is a type of natural disaster that occurs with high frequency, has a wide range of 
impacts, and results in the most serious disaster losses around the world (Mishra and Singh, 
2010; Dai, 2011; Zhang et al., 2013). Drought usually refers to a water shortage caused by 
an imbalance between evaporation and precipitation over a certain period. Notably, droughts 
can have serious negative effects on agricultural production, natural ecosystems, society and 
the economy (Dabanlı et al., 2017; Shi et al., 2017). Several drought indices are used to 
monitor the onset, duration, and severity of droughts, such as the Palmer drought severity 
index (PDSI) and the standardized precipitation index (SPI) (Palmer, 1965; McKee et al., 
1993; Dai et al., 2004). The PDSI comprehensively considers precipitation, temperature, and 
effective soil moisture based on the water balance model. However, this index lacks the 
ability to monitor the multiscalar nature of drought. To address this problem, McKee et al. 
(1993) proposed the SPI, which describes the cumulative probability of observed precipita-
tion at any given time. Moreover, the SPI requires only precipitation data and has multiscale 
features. Many studies have been conducted in past decades using the SPI, but most of them 
were based on in situ observations (Huang et al., 2010; Zhou et al., 2013; Gao et al., 2015). 
Due to geographical and economic factors, meteorological sites are often sparsely distrib-
uted and lack good spatial representation. Although regional drought conditions can be ob-
tained through spatial interpolation, the data may have uncertainties, especially when 
weather stations are sparse. 

With the rapid development of remote sensing technology, a series of precipitation prod-
ucts based on satellite remote sensing has emerged (Cashion et al., 2005; Hao et al., 2011). 
These products have a wide range of quasi-global scale coverage and high spatiotemporal 
resolution; additionally, they can effectively compensate for the lack of spatially distributed 
ground stations and provide a new data source for the calculation of drought indices. Among 
such data sources, the Tropical Rainfall Measuring Mission (TRMM) products have received 
considerable attention since the TRMM launch on November 27, 1997 (Zeng and Li, 2011; 
Liu et al., 2016; Gao et al., 2017; Erazo et al., 2018). Li et al. (2013) evaluated the suitabil-
ity of the TRMM products in dry/wet monitoring over the Poyang Lake Basin. Similar stud-
ies have also been conducted in Chile and the Lake Chad Basin in Africa (Naumann et al., 
2012; Zambrano et al., 2017). These studies have shown that observational data at the 
monthly scale and at ground stations are highly accurate and can replace site observation 
data to a certain extent. Therefore, the TRMM products have broad application prospects in 
the field of drought monitoring. However, there has been little research on the TRMM 
products applied to drought monitoring and assessment at the river basin scale, particularly 
in the middle and lower reaches of the Yangtze River Basin (MLRYRB), China. 

The purpose of the study is to determine whether the remote-sensing-based TRMM prod-
ucts can replace station-based precipitation measurements and become new sources of data 
for regional drought monitoring and assessment. In this study, the main specific objectives 
are (1) to evaluate the correlation of SPI values over different time scales (1, 3, 6, and 12 
months) in the MLRYRB as derived from remote-sensing-based TRMM rainfall data and 
station-based precipitation data and (2) to use the SPI values calculated from remotely 
sensed TRMM products to estimate the spatial and temporal distributions of drought condi-
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tions over a 19-year period (1998–2016) in the MLRYRB, thereby providing a new data 
source for use in regional drought monitoring. 

2  Data and methods 

2.1  Study area 

The Yangtze River is one of the major rivers in China, with a length of approximately 6300 
km and a catchment area of approximately 1.8 million km2. We choose the middle and lower 
reaches of the Yangtze River as the study area, which is divided into six sub-basins: the 
Hanjiang River watershed, the Dongting Lake watershed, the middle reaches of the Yangtze 
River, the Poyang Lake watershed, the lower reaches of the Yangtze River and the delta 
plain (as shown in Figure 1) (Shan et al., 2018). The climate in this area is warm and wet in 
summer and cold and dry in winter. The average annual temperature ranges from approxi-
mately 14°C to 18°C. The annual rainfall totals approximately 1000 to 1400 mm and is 
mainly concentrated in the flood season. Moreover, plum rains are a major feature of this 
area. Summer monsoons often occur after plum rains. These events can lead to inestimable 
agricultural losses and inhibit economic development in the area. Therefore, taking effective 
measures to monitor the drought conditions in the MLRYRB is important. 
 

 
 
Figure 1  Location of the MLRYRB and distribution of meteorological stations 

2.2  Data 

The TRMM mission is an international plan jointly developed by the National Aeronautics 
and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA) to 
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study weather and climate factors. The TRMM satellite was successfully launched on No-
vember 27, 1997 (Tao et al., 2016; Ma et al., 2017). The spatial resolution of the TRMM 
data is 0.25°0.25°, with an initial height of approximately 350 km and a coverage range of 
50°S to 50°N (Fan et al., 2017; Ma et al., 2018). In this study, the TRMM 3B43 data span-
ning 19 years from January 1998 to December 2016 were collected, and the TRMM grid 
data from the Yangtze River Basin were then extracted for a total of 1367 grids, which were 
provided by the NASA Precipitation Measurement Mission website. In addition, the monthly 
precipitation data collected at 60 meteorological stations from 1961 to 2016 were used in 
this study. These data were obtained from the China Meteorological Data Sharing Service 
System (available at http://cdc.nmic.cn/home.do). 

2.3  The standardized precipitation index 

The SPI is obtained with a standardized probability to quantify the deficit in precipitation 
(Patel et al., 2007; McRoberts and Nielsen-Gammon, 2012). Precipitation data series are 
fitted to a gamma probability density function to obtain the cumulative probability and then 
transformed to a normal distribution with an inverse normal function (Mondol et al., 2017). 
Then, the SPI values can be defined as: 
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where x is the monthly precipitation, c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 
=1.432788, d2 = 0.189269, d3 = 0.001308, and H(x) is the cumulative probability of the data 
series, which is transformed into an incomplete gamma distribution function (Santos et al., 
2017). The gamma distribution is expressed as follows: 
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where α and β are shape and scale parameters, 
respectively, and ( )  is the gamma function. 
In this study, four time scales (1, 3, 6, 12 
months) were used to calculate the SPI values. 
Table 1 shows the classification of the severity 
of dryness and wetness according to the SPI 
values (McKee et al., 1993; McKee, 1995). 

In addition, the nonparametric Mann-Ke-
ndall (MK) test was used to identify the dry-
ing or wetting trends in the MLRYRB based 
on the SPI values at the 3-month time scale. For a detailed introduction to the test, please 
refer to the literature (Zhai and Feng, 2009; Tosunoglu and Kisi, 2017). The main feature of 
the MK test is that the distribution characteristics of the data need not be assumed in ad-

Table 1  Drought classification based on SPI values 

SPI value Drought category 

(2.0, +∞) Extreme wet 

(1.5, 2.0] Severe wet 

(1.0, 1.5] Moderate wet 

(–1.0, 1.0] Normal 

(–1.5, –1.0] Moderate drought 

(–2.0, –1.5] Severe drought 

(–∞, –2.0] Extreme drought 
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vance; therefore, this test has been widely used in trend analysis. The standardized Z values 
obtained by the MK test provide a way of quantitatively indicating trends and significance 
(Hamed, 2008; Li et al., 2015). Positive values indicate more humid trends, and negative 
values indicate more arid trends. When the significance levels are set at 0.01, 0.05, and 0.1, 
the absolute values of Z are 2.575, 1.96 and 1.645, respectively. 

3  Results 

3.1  Comparison of TRMM and station data 

To evaluate the suitability of the TRMM 3B43 precipitation products for drought monitoring, 
the SPI values in the MLRYRB from 1998–2016 were calculated from the TRMM data and 
the meteorological data at different time scales (1, 3, 6 and 12 months) (Figure 2). The 
TRMM data and the meteorological data are highly consistent. The amplitude of fluctuations 
decreases as the time scale increases. Additionally, the correlation coefficient (R2) is greater 
than 0.96. However, at a time scale of 12 months, the correlation coefficient is not as good 
as those of short time scales (1, 3 and 6 months). In addition, the TRMM-derived SPI 
slightly overestimates the drought intensity compared to the station-derived SPI. 

Correlation analysis between the TRMM-derived SPI values and station-derived SPI val-
ues was conducted at different time scales during the period of 1998–2016 (Figure 3). The 
SPI values calculated using the two data sources are highly correlated. The correlation coef-
ficients of the short time scales (1, 3, and 6 months) are all greater than 0.7, and the correla-
tion coefficient of the long time scale (12 months) is greater than 0.5, indicating that the 
TRMM 3B43 products perform better at short time scales. Notably, the accuracy of SPI val-
ues is affected by the time series length, and the meteorological stations with low correla-
tions are located near the boundaries of the basin, where the associated data are easily af-
fected by topographical factors. 

3.2  Drought monitoring using TRMM data 

The MK trend test is used to detect the trends in SPI values in the MLRYRB at a 3-month 
time scale for the 1367 grids from 1998 to 2016 (Figure 4). The upward arrows represent 
wetter trends in the SPI values, whereas the downward arrows represent drier trends in the 
SPI values. In the overall study area, 974 grids exhibit increasing trends, that is, 71.25% 
experience wetter trends. Additionally, 393 grids exhibit decreasing trends, that is, 28.75% 
experience drier trends. The delta plain, the lower reaches of the Yangtze River, and the 
Poyang Lake watershed display upward trends, and the southern part of the Dongting Lake 
watershed, the eastern part of the middle reaches of the Yangtze River, and the western 
part of the Hanjiang River watershed also exhibit upward trends. The remaining regions 
display downward trends. For the trends in SPI values, 37.82%, 30.29%, and 17.34% of 
areas reached the positive significance levels of 0.1, 0.05, and 0.01, respectively, and 
4.32%, 2.41%, and 0.51% of the areas reached the negative significance levels of 0.1, 0.05, 
and 0.01, respectively. In general, wetting trends in the entire region clearly prevailed over 
drying trends. 
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Figure 2  SPI time series calculated from the TRMM 3B43 data (blue and red shaded bars) and station data 
(solid line) at different time scales: (a) 1 month; (b) 3 months; (c) 6 months; and (d) 12 months 
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Figure 3  Correlation coefficients of the SPI values calculated with the TRMM 3B43 products and the weather 
station data 
 

 
 
 

Figure 4  Spatial distribution of the SPI value trends at the 3-month time scale in the MLRYRB 
 
To demonstrate the temporal variability of drought more explicitly, the SPI time series 

based on TRMM products were averaged over all 1367 grid cells to characterize the dry or 
wet conditions in the MLRYRB during the period of 1998–2016 (Figure 5). The SPI time 
series all indicated a wetting trend, and the SPI values on a 3-month scale refer to the sea- 
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Figure 5  Temporal variability in the SPI values and the drought events of different severity grades from 
1998–2016 
 

sonal water deficits caused by droughts. In addition, the May, August, November and Feb-
ruary SPI values represent the spring, summer, autumn, and winter values, respectively. As 
shown in Figure 5b, a spring drought occurred in 2011; no summer droughts occurred; au-
tumn droughts occurred in 1998 and 2007; and a winter drought occurred in 1999. Further-
more, as the time scale increased, the separation between dry and wet periods became more 
obvious. Figure 5d shows that drought events occurred frequently in 2001, 2002 and 2011. 

The time scale of 3 months exhibited the highest correlation coefficient (R2=0.9833). 
Therefore, the SPI values at a time scale of 3 months were selected to demonstrate the spa-
tial distribution of the drought frequency in the MLRYRB during the period of 1998–2016. 
The frequency of drought events (SPI≤–1) and different drought levels (moderate drought, 
severe drought and extreme drought) based on the SPI values at the 3-month time scale are 
presented in Figure 6 to illustrate the spatial distribution of drought severity in the 
MLRYRB from 1998 to 2016. Figure 6a presents the spatial distribution of the total drought 
frequency in the study area. The Poyang Lake watershed region experienced the lowest 
drought frequency, potentially because rainfall is plentiful in the Poyang Lake watershed, 
averaging 1400 to 1900 mm annually. The middle reaches of the Yangtze River exhibited a 
high frequency of extreme drought, but the frequency of moderate drought was relatively 
low. The frequency of moderate drought was high in the lower reaches of the Yangtze River, 
but the frequency of extreme drought was relatively low. In addition, according to the ranges 
of the frequency values of moderate drought (Figure 6b), severe drought (Figure 6c), and 
extreme drought (Figure 6d), moderate drought occurs most frequently, followed by severe 
drought and extreme drought. 
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Figure 6  Frequency of drought events and different drought levels (moderate drought, severe drought and ex-
treme drought) based on the SPI values at the 3-month time scale in the MLRYRB from 1998 to 2016 

 
In addition, the area percentages of the MLRYRB associated with different drought 

grades (moderate, severe and extreme) are shown in Figure 7 to further reveal the drought 
variations on spatial and temporal scales. Figure 7 shows the area percentages of moderate 
drought (areas in orange), severe drought (areas in pink) and extreme drought (areas in dark 
red) conditions. The figure illustrates that the most severe drought year was 2011 and that 
the area and frequency of moderate drought are the largest, followed by those of severe 
drought and extreme drought. In addition, the long-term SPI values (12 months) presented in 
Figure 7d suggest that sustained drought events occurred between March 2011 and April 
2012 and covered up to 50% of the MLRYRB. Notably, in September 2011, 66.7% of the 
MLRYRB experienced drought events, of which moderate drought, severe drought, and ex-
treme drought conditions comprised 21.5%, 34.2%, and 11.0% of the area, respectively. In 
addition, the regional spatial distribution of typical drought events in the MLRYRB from 
1998–2016 based on SPI-3 is shown in Figure 8. In severe drought months in the MLRYRB, 
most of the area experienced drought events. The results show that the application of the 
TRMM 3B43 data provides a new method of calculating the spatial distribution of drought 
indices. 

4  Discussion 
Although the TRMM 3B43 satellite precipitation product has been well applied in drought 
monitoring in the MLRYRB, Wu et al. (2005) noted that the accuracy of the SPI values is 
affected by the length of the time series because reducing the length of time may lead to  
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Figure 7  Temporal evolution based on the TRMM 3B43-derived SPI values for different drought conditions 
(moderate, severe and extreme) at different time scales (1, 3, 6 and 12 months) 
 

instability in parameter estimation. Therefore, to determine whether the application of 
TRMM satellite data in the MLRYRB is affected by the length of time, this study selected 
meteorological station data (as shown in Figure 1) from 1961 to 2016 to validate the reli- 
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Figure 8  Spatial pattern of typical drought events based on the SPI values during the period of 1998–2016 
 

ability of TRMM-based satellite drought monitoring. Based on the meteorological station 
data, the SPI values at the four time scales (1, 3, 6 and 12 months) were calculated, and the 
SPI values from 1998 to 2016 were then selected and compared with the SPI values calcu-
lated from the TRMM data corresponding to site locations (Figure 9). Figure 9 shows that 
the SPI values at different time scales calculated using the two data sources are highly cor-
re la ted  and  that  the  corre la t ion coeff ic ients  (R 2 )  a re  greater  than 0 .95. 

Based on the SPI values calculated from the meteorological site data for 56 years, the 
time series from 1998–2016 was selected, and the correlations with the SPI values calculated 
from the TRMM 3B43 data from corresponding sites were analyzed to obtain the spatial 
distribution of the correlation coefficients (Figure 10). Except for three stations in Figure 
10c and six stations in Figure 10d, for which the correlation coefficients are less than 0.8, all 
other correlation coefficients are greater than 0.8, indicating that the correlation between the 
TRMM 3B43 product and station data based on the 56-year time series is high. Although  
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Figure 9  SPI time series calculated from the TRMM 3B43 data (blue and red shaded bars) and station data 
(solid line) based on the 56-year time series at different time scales 
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Figure 10  Correlation coefficients for SPI values calculated with the TRMM 3B43 product and station data 
based on the 56-year time series 
 
Wu et al. (2005) noted that the calculation accuracy of the SPI values is influenced by the 
length of the time series, the results show that the accuracy of the SPI in the MLRYRB is 
affected slightly by the time series length, indicating that the TRMM data can be effectively 
applied for drought monitoring in the MLRYRB. In addition, because the TRMM precipita-
tion product has been available since January 1998, long-term sequential drought index cal-
culations are temporarily impossible; however, NASA’s Global Precipitation Measuring 
Mission will continue to provide long-range satellite precipitation products. Therefore, the 
shortcomings of the time series length can be resolved when the SPI drought index calcula-
tion is performed based on TRMM data in the future. 

5  Conclusions 
In this study, to assess the applicability of the TRMM 3B43 products for drought monitoring 
in the MLRYRB, the SPI drought indices from 1998 to 2016 at different time scales (1, 3, 6 
and 12 months) were calculated based on the TRMM 3B43 satellite precipitation products 
and meteorological data collected at 60 meteorological stations. In addition, the correlation 
between the two data sources was assessed to investigate the performance of the TRMM 
3B43 data. The main conclusions can be summarized as follows. 

(1) The SPI values exhibit a high degree of consistency over the different time scales (1, 3, 
6 and 12 months) based on the two data sources, and the amplitude of fluctuations decreases 
with increasing time scale. As the time scale increases, the consistency of the SPI values 
calculated based on the two data sources decreases slightly. 

(2) The MK test method is applied to detect the trends in SPI values in the MLRYRB 
from 1998 to 2016. Notably, 71.25% of the entire study area experienced wetter trends, and 
28.75% experienced drier trends, suggesting that wetting trends in the region clearly pre-
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vailed over drying trends. 
(3) The validation based on station data indicated that the SPI values calculated using the 

two data sources are highly correlated. The results suggest that the TRMM satellite precipi-
tation products can be used to monitor drought events and effectively compensate for the 
errors associated with the spatial distribution of the SPI values generated by spatial interpo-
lation. Therefore, the TRMM precipitation products can be confidently used instead of 
ground station observations to monitor and assess regional droughts, even in areas with 
sparse and unevenly distributed weather stations. The TRMM product also provides a new 
data source and technical support for future regional hydrological forecasting and disaster 
monitoring.  
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